4.7 Article

A novel implementation of kNN classifier based on multi-tupled meteorological input data for wind power prediction

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 135, Issue -, Pages 434-444

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2016.12.094

Keywords

Wind power production; Very short-term prediction; Multidimensional meteorological data; k-nearest neighbor classifier

Ask authors/readers for more resources

With the growing share of wind power production in the electric power grids, many critical challenges to the grid operators have been emerged in terms of the power balance, power quality, voltage support, frequency stability, load scheduling, unit commitment and spinning reserve calculations. To overcome such problems, numerous studies have been conducted to predict the wind power production, but a small number of them have attempted to improve the prediction accuracy by employing the multidimensional meteorological input data. The novelties of this study lie in the proposal of an efficient and easy to implement very short-term wind power prediction model based on the k-nearest neighbor classifier (kNN), in the usage of wind speed, wind direction, barometric pressure and air temperature parameters as the multi-tupled meteorological inputs and in the comparison of wind power prediction results with respect to the persistence reference model. As a result of the achieved patterns, we characterize the variation of wind power prediction errors according to the input tuples, distance measures and neighbor numbers, and uncover the most influential and the most ineffective meteorological parameters on the optimization of wind power prediction results. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available