4.7 Article

Production of bio-oil via hydrothermal liquefaction of birch sawdust

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 144, Issue -, Pages 243-251

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2017.04.053

Keywords

Birch sawdust; Lignin; Cellulose; Hemicellulose; Bio-oil; Hydrothermal liquefaction

Funding

  1. National Research Program of Latvia LATENERGI

Ask authors/readers for more resources

The effect of weight ratio of plywood manufacturing by-product birch sawdust (BS) to water (1/2-1/8), reaction temperature (200-340 degrees C), initial H-2 pressure (0-10 MPa), residence time (5-90 min), catalysts amount (0.25-7.0 wt.%) and type (FeSO4, ZnSO4, NiSO4, Raney-nickel, Ni65%/SiO2-Al2O3, Na2CO3 and NaOH) on hydrothermal liquefaction of BS was investigated. High yield of bio-oil (54.1%) with calorific value (CV) 24.9 MJ/kg under developed optimal experimental conditions in the presence of NaOH (5 wt.%) utilizing weight ratio of BS to water 1/4, residence time 5 min, mixing speed 250 rpm at 300 degrees C without pressurized particular inert gas or H-2 atmosphere was achieved. Compounds in bio-oil analyzed by gas chromatography-mass spectrometry (GC-MS) have suitable chemical structures for conversion into renewable hydrocarbons. Marketable solid residue (SR) with yield 7.1%, high CV (29.8 MJ/kg) and perspective characteristics for industrial application was obtained. Produced gas in process analyzed by gas chromatography-thermal conductivity detector (GC-TCD) contains 60.1 vol.% of CO2. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation

Kristaps Malins, Valdis Kampars, Janis Brinks, Ilze Neibolte, Raimonds Murnieks

APPLIED CATALYSIS B-ENVIRONMENTAL (2015)

Article Multidisciplinary Sciences

Investigation of Deoxygenation of Rapeseed Oil over Raney Nickel and Ni/SiO2-Al2O3 Catalysts

Raimonds Murnieks, Lauma Apseniece, Valdis Kampars, Zane Shustere, Kristaps Malins

ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING (2016)

Article Agricultural Engineering

Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge

Kristaps Malins, Valdis Kampars, Janis Brinks, Ilze Neibolte, Raimonds Murnieks, Ruta Kampare

BIORESOURCE TECHNOLOGY (2015)

Article Chemistry, Physical

Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose

Kristaps Malins, Janis Brinks, Valdis Kampars, Ilze Malina

APPLIED CATALYSIS A-GENERAL (2016)

Article Agricultural Engineering

Hydrotreating of wheat straw in toluene and ethanol

Raimonds Murnieks, Valdis Kampars, Kristaps Malins, Lauma Apseniece

BIORESOURCE TECHNOLOGY (2014)

Article Energy & Fuels

Properties of rapeseed oil fatty acid alkyl esters derived from different alcohols

Kristaps Malins, Valdis Kampars, Ruta Kampare, Julija Prilucka, Janis Brinks, Raimonds Murnieks, Lauma Apseniece

Article Chemistry, Applied

Optimization of rapeseed oil fatty acid esterification with methanol in the presence of sulfuric acid

Janis Brinks, Kristaps Malins, Valdis Kampars, Julija Prilucka, Lauma Apseniece

POLISH JOURNAL OF CHEMICAL TECHNOLOGY (2013)

Article Energy & Fuels

Synthesis of renewable hydrocarbons from vegetable oil feedstock by hydrotreatment over selective sulfur-free SiO2-Al2O3 supported monometallic Pd, Pt, Ru, Ni, Mo and bimetallic NiMo catalysts

Kristaps Malins

Summary: Screening tests were carried out on various monometallic and bimetallic catalysts synthesized by different impregnation methods to evaluate their performance and selectivity for hydrocarbon production from vegetable oil feedstock with high FFA content. Among them, the Mo-promoted Ni17Mo3DP catalyst exhibited great performance and selectivity, achieving a higher hydrocarbon yield and demonstrating potential for producing renewable hydrocarbons from fatty acid containing raw materials.
Article Green & Sustainable Science & Technology

Production of renewable hydrocarbons from vegetable oil refining by-product/waste soapstock over selective sulfur-free high metal loading SiO2-Al2O3 supported Ni catalyst via hydrotreatment

Kristaps Malins

Summary: The study investigated the performance, selectivity, recovery, and reusability of a commercial Ni66 +/- 5%/SiO2-Al2O3 catalyst in renewable hydrocarbon synthesis. By using a solvent-free one-pot hydrotreatment method, combustible gases and high yield linear saturated hydrocarbons were successfully produced from low cost raw material pretreated soapstock, indicating the potential for green energy production.

JOURNAL OF CLEANER PRODUCTION (2021)

Article Thermodynamics

Optimal electrode configuration and system design of compactly-assembled industrial alkaline water electrolyzer

Pengcheng Zhao, Jingang Wang, Liming Sun, Yun Li, Haiting Xia, Wei He

Summary: The production of green hydrogen through water electrolysis is crucial for renewable energy utilization and decarbonization. This research explores the optimal electrode configuration and system design of compactly-assembled industrial electrolyzer. The findings provide valuable insights for industrial application of water electrolysis equipment.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Performance investigations of hybrid adsorption and thermo electric dehumidification desalination system

V. Baiju, P. Abhishek, S. Harikrishnan

Summary: Thermally driven adsorption desalination systems (ADS) have gained attention as an eco-friendly solution for water scarcity. However, they face challenges related to low water productivity and scalability. To overcome these challenges, integrating ADS with other desalination technologies can create a small-scale hybrid system. This study proposes integrating ADS with a Thermo Electric Dehumidification (TED) unit to enhance its performance.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

A transient multi-path decentralized resistance-capacity network model for prismatic lithium-ion batteries based on genetic algorithm optimization

C. X. He, Y. H. Liu, X. Y. Huang, S. B. Wan, Q. Chen, J. Sun, T. S. Zhao

Summary: A decentralized centroid multi-path RC network model is constructed to improve the temperature prediction accuracy compared to traditional RC models. By incorporating multiple heat flow paths and decentralizing thermal capacity, a more accurate prediction is achieved.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Solar oil refinery: Solar-driven hybrid chemical cracking of residual oil towards efficiently upgrading fuel and abundantly generating hydrogen

Chaoying Li, Meng Wang, Nana Li, Di Gu, Chao Yan, Dandan Yuan, Hong Jiang, Baohui Wang, Xirui Wang

Summary: There is an urgent need to shift away from heavy dependence on fossil fuels and embrace renewable energy sources, particularly in the energy-intensive oil refining process. This study presents an innovative concept called the Solar Oil Refinery, which applies solar energy in oil refining. A solar multi-energies-driven hybrid chemical oil refining system that utilizes solar pyrolysis and electrolysis has been developed, significantly improving solar utilization efficiency, cracking rate, and hydrogen yield.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Optimization design and performance analysis of a bio-inspired fish-tail vertical axis wind rotor

Chao Ma, Guanghui Wang, Dingbiao Wang, Xu Peng, Yushen Yang, Xinxin Liu, Chongrui Yang, Jiaheng Chen

Summary: This study proposes a bio-inspired fish-tail wind rotor to improve the wind power efficiency of the traditional Savonius rotor. Through transient simulations and orthogonal experiments, the key factors affecting the performance are identified. A response surface model is constructed to optimize the power coefficient, resulting in an improvement of 9.4% and 6.6% compared to the Savonius rotor.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

A new framework of piezoelectric smart tiles based on magnetic plucking, mechanical impact, and mechanical vibration force mechanisms for electrical energy harvesting

Sina Bahmanziari, Abbas-Ali Zamani

Summary: This paper proposes a new framework for improving electrical energy harvesting from piezoelectric smart tiles through a combination of magnetic plucking, mechanical impact, and mechanical vibration force mechanisms. Experimental results demonstrate a significant increase in energy yield and average energy harvesting time compared to other mechanisms.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

An efficient mixed-variable generation operator for integrated energy system configuration optimization

Nanjiang Dong, Tao Zhang, Rui Wang

Summary: This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system, and proposes an efficient generating operator to optimize this model. The experimental results show that the proposed algorithm performs better than other state-of-the-art algorithms.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Sustainable production of bioethanol from office paper waste and its purification via blended polymeric membrane

Ahmed E. Mansy, Eman A. El Desouky, Tarek H. Taha, M. A. Abu-Saied, Hamada El-Gendi, Ranya A. Amer, Zhen-Yu Tian

Summary: This study aims to convert office paper waste into bioethanol through a sustainable pathway. The results show that physiochemical and enzymatic hydrolysis of the waste can yield a high glucose concentration. The optimal conditions were determined using the Box-Behnken design, and a blended membrane was used for ethanol purification.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Steam generating heat pumps - Overview, classification, economics, and basic modeling principles

Sven Klute, Marcus Budt, Mathias van Beek, Christian Doetsch

Summary: Heat pumps are crucial for decarbonizing heat supply, and steam generating heat pumps have the potential to decarbonize the industrial sector. This paper presents the current state, technical and economic data, and modeling principles of steam generating heat pumps.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Applying current-carrying-coil-based magnetic field (CCC-MF) to promote anaerobic digestion of chicken manure: Performance evaluation, mitigation of ammonia inhibition, microbial community analysis, and pilot-scale validation

Le Zhang, To-Hung Tsui, Yen Wah Tong, Pruk Aggarangsi, Ronghou Liu

Summary: This study investigates the effectiveness of a current-carrying-coil-based magnetic field in promoting anaerobic digestion of chicken manure. The results show that the applied magnetic field increases methane yield, decreases carbon dioxide production, and reduces the concentration of ammonia nitrogen. Microbial community analysis reveals the enrichment of certain methanogenic genera and enhanced metabolic pathways. Pilot-scale experiments confirm the technical effectiveness of the magnetic field assistance in enhancing anaerobic digestion of chicken manure.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Co-optimization of speed planning and cost-optimal energy management for fuel cell trucks under vehicle-following scenarios

Bo Chen, Ruiqing Ma, Yang Zhou, Rui Ma, Wentao Jiang, Fan Yang

Summary: This paper presents an advanced energy management strategy for fuel cell hybrid electric heavy-duty vehicles, focusing on speed planning and energy allocation. By utilizing predictive co-optimization control, this strategy ensures safe inter-vehicle distance and minimizes energy demand. Simulation results demonstrate the effectiveness of the proposed method in reducing fuel cell degradation cost and overall operation cost.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

The benefits of a recuperative layout of an ORC-based unit fed by a solar-assisted reservoir operating as a micro-cogeneration plant

Fabio Fatigati, Roberto Cipollone

Summary: Organic Rankine Cycle-based microcogeneration systems that use solar sources to generate electricity and hot water can help reduce CO2 emissions in residential energy-intensive sectors. The adoption of a recuperative heat exchanger in these systems improves efficiency, reduces thermal power requirements, and saves on electricity costs.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

A piezoelectric-electromagnetic hybrid energy harvester for low-frequency wave motion and self-sensing wave environment monitoring

Lipeng He, Renwen Liu, Xuejin Liu, Xiaotian Zheng, Limin Zhang, Jieqiong Lin

Summary: This research proposes a piezoelectric-electromagnetic hybrid energy harvester (PEHEH) for low-frequency wave motion and self-sensing wave environment monitoring. The PEHEH shows promising power output and the ability to self-power and self-sense the wave environment.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Multi-objective optimization of micro-gas turbine coupled with LCPV/T combined cooling, heating and power (CCHP) system based on following electric load strategy

Shangling Chu, Yang Liu, Zipeng Xu, Heng Zhang, Haiping Chen, Dan Gao

Summary: This paper studies a distributed energy system integrated with solar and natural gas, analyzes the impact of different parameters on its energy utilization and emissions reduction, and obtains the optimal solution through an optimization algorithm. The results show that compared to traditional separation production systems, this integrated system achieves higher energy utilization and greater reduction in carbon emissions.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Study on operation performance and application potential of the piston-type thermally-driven pump

Qingpu Li, Yaqi Ding, Guangming Chen, Yongmei Xuan, Neng Gao, Nian Li, Xinyue Hao

Summary: This paper proposes and studies a piston-type thermally-driven pump with a structure similar to a linear compressor, aiming to eliminate the high-quality energy consumption of existing pumps and replace mechanical pumps. The coupling mechanism of working fluid flow and element dimension is analyzed based on force analysis, and experimental data analysis is used to determine the pump operation stroke. Theoretical simulation is conducted to analyze the correlation mechanism of the piston assembly. The research shows that the thermally-driven pump can greatly reduce power consumption and has potential for industrial applications.

ENERGY CONVERSION AND MANAGEMENT (2024)