4.7 Article

Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 135, Issue -, Pages 1-8

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2016.12.061

Keywords

Solar Aided Power Generation; Non-displaced feedwater heater; Operation strategy; Power boosting

Ask authors/readers for more resources

Solar Aided Power Generation is a technology in which low grade solar thermal energy is used to displace the high grade heat of the extraction steam in a regenerative Rankine cycle power plant for feedwater preheating purpose. The displaced extraction steam can then expand further in the steam turbine to generate power. In such a power plant, using the (concentrated) solar thermal energy to displace the extraction steam to high pressure/temperature feedwater heaters (i.e. displaced feedwater heaters) is the most popular arrangement. Namely the extraction steam to low pressure/temperature feedwater heaters (i.e. non-displaced feedwater heaters) is not displaced by the solar thermal energy. In a Solar Aided Power Generation plants, when solar radiation/input changes, the extraction steam to the displaced feedwater heaters requires to be adjusted according to the solar radiation. However, for the extraction steams to the non-displaced feedwater heaters, it can be either adjusted accordingly following so-called constant temperature strategy or unadjusted i.e. following so-called constant mass flow rate strategy, when solar radiation/input changes. The previous studies overlooked the operation of non-displaced feedwater heaters, which has also impact on the whole plant's performance. This paper aims to understand/reveal the impact of the two different operation strategies for non-displaced feedwater heaters on the plant's performance. In this paper, a 300 MW Rankine cycle power plant, in which the extraction steam to high pressure/temperature feedwater heaters is displaced by the solar thermal energy, is used as study case for this purpose. It was found that plant adopting the constant temperature strategy is generally better than that adopting the constant mass flow rate strategy. However, if rich solar energy is available, adopting the constant mass flow rate strategy can achieve better performance. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available