4.7 Article

Mathematical model for integrated coal fired thermal boiler using physical laws

Journal

ENERGY
Volume 118, Issue -, Pages 985-998

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2016.10.127

Keywords

Mathematical modeling; Parameter identification; Coal-fired thermal power plant; Subcritical boiler; Simulation

Ask authors/readers for more resources

The boiler of coal-fired thermal power plant consists of integrating process units such as the furnace, economizer, drum, and superheater. There is a lack of proper dynamic model derived from mass and energy balances of individual units integrated together where dynamics of material and energy flow are not understood properly supporting the larger footprints and environmental impact of the specific industry. This paper considers formulation of simple mathematical models for integrated boiler units based on first principle laws (excluding furnace). The derived equations are validated with the real-time plant data from 210 MW coal-fired thermal power plant. Though temperature and pressures are convertible at equilibrium through Clausius-Clapeyron equation, the model supports for level, temperature and pressure measurements and predictions. The effects of change in parameters of the boiler are studied and discussed in detail. The model can be used for further process control studies. (C) 2016 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available