4.7 Article

Dynamic Paths: Towards high frequency direct normal irradiance forecasts

Journal

ENERGY
Volume 132, Issue -, Pages 315-323

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.05.101

Keywords

Forecast; Dynamic Path; High-frequency; Variability; DNI; Numerical weather prediction (NWP)

Funding

  1. European Union's Horizon 2020 research and innovation programme in the Pre-FlexMS project [654984]

Ask authors/readers for more resources

Direct normal solar irradiance (DNI) series of high-frequency time resolution permit an accurate modeling and analysis of transient processes in concentrating solar thermal power (CSTP) technologies. Numerical weather prediction (NWP) models provide an overall understanding of solar forecasting, but they are unlikely to cover a local statistical representativeness of the DNI high frequency dynamics. On the contrary, local statistical information derived from site measurements can provide statistical behavior, but may not necessarily yield an explicit model for all of the physical relationships involved. In this work, we propose a novel locally-adapted procedure for high-frequency DNI forecasting that connects these two extremes, proposing a hybrid approach in which low frequency (3-h) NWP outcomes act as boundary conditions (assuring a physical consistency with site climatic behavior) and are supplemented with Dynamic Paths of local high frequency (1-min) DNI series (assuring a statistical reproduction of site high frequency dynamics). This methodology is tested with ground measurements in 4 locations situated in different climates, and compared with a forecast base case. The analyses are carried out by classifying each measured time series into 6 categories according to its daily clearness index. Finally, metrics for adequately compare high frequency DNI forecasts are discussed. (C) 2017 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available