4.5 Article

Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China

Journal

ENERGIES
Volume 10, Issue 9, Pages -

Publisher

MDPI AG
DOI: 10.3390/en10091405

Keywords

collaborative dispatching system (CPDS); carbon emissions trading system (CETS); optimization model; biomass power; thermal power; pumped storage power

Categories

Funding

  1. National Social Science Foundation of China [71373077]

Ask authors/readers for more resources

In this paper, a collaborative power dispatching system (CPDS) was developed to maximize the profit of a regional biomass power system consisting of an independent power grid. A power generating, dispatching and carbon emissions trading system (CETS) could be engaged in joint strategic planning and operational execution. The principal of CPDS is interactive planning of generating units in power generation and carbon emissions trading. An efficient carbon emissions trading plan for a CPDS would lead to optimized power generation levels under available power production capacities and carbon emissions. In a case study, four generator policies are proposed by considering basic CETSs to comparatively analyze the function of each generator in the CPDS. Results of four scenarios are compared, showing that biomass energy could replace thermal units to a certain extent, the carbon emissions and coal consumption of the CPDS would lie at a lower level, and a pumped storage unit could adjust the load fluctuations. The results of a carbon trading analysis show that the CETS has no significant impact on the CPDS, but along with the increase in trading price or the decrease in the free quota, the economic interests of power plants will be reduced accordingly. This may lead to carrying out low-carbon projects and reducing carbon emissions. Therefore, it is imperative to reduce carbon emissions by replacing power units with high energy consumption, and improve the consumption capacity of renewable energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available