4.5 Article

Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control

Journal

ENERGIES
Volume 10, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/en10030404

Keywords

parallel-connected cells; loop current; electric vehicle; energy management; fuzzy logic

Categories

Funding

  1. Key Tackling Item in Science and Technology Department of Jilin Province [20150204017GX]

Ask authors/readers for more resources

Inconsistencies that are associated with parallel-connected cells used in electric vehicles induce varied states of charge (SOCs) in each cell. Thus, loop current in the battery pack is inevitable, and this reduces overall capacity, energy utilization rate, and pack lifetime. However, no method is available to address loop current. To reduce loop current and the resulting battery inconsistency, a parallel-connected cell pack (PCCP) model that considers thermal effects is established, and a novel Simscape model that is based on PCCP is successfully constructed. Furthermore, the strategy of parallel-connected cell energy management (PCCEM) is proposed to utilize fuzzy logic control (FLC) strategy, which automatically adjusts the number of cells in a circuit in accordance with the load demand, and turns on the first N switches in the corresponding SOC order. The New European Driving Cycle (NEDC) driving cycle simulation shows that the PCCEM strategy considerably reduces loop current and improves the consistency of battery performance and the utilization rate of battery power.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available