4.5 Article

An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams

Journal

ADVANCES IN NANO RESEARCH
Volume 4, Issue 2, Pages 65-84

Publisher

TECHNO-PRESS
DOI: 10.12989/anr.2016.4.2.065

Keywords

piezoelectric nanobeam; magneto-electro-elastic FG nanobeam; buckling; nonlocal elasticity theory; higher order beam theory

Ask authors/readers for more resources

This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam are supposed to be graded continuously in the thickness direction based on power-law model. To consider the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are provided. Due to the shortage of same results in the literature, it is expected that the results of the present study will be instrumental for design of size-dependent MEE-FG nanobeams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mechanics

Wave dispersion characteristics of a rectangular sandwich composite plate with tunable magneto-rheological fluid core rested on a visco-Pasternak foundation

Farzad Ebrahimi, Sepehr Bayrami Sedighi

Summary: In this paper, a sandwich composite plate with a tunable magneto-rheological (MR) fluid core was used to analyze wave propagation. The effects of magnetic field and core-to-top layer thickness ratio on the wave dispersion characteristics were investigated. The results showed that the magnetic field intensity was the most important factor in changing the wave dispersion characteristics, and increasing the core-to-top layer thickness ratio led to a decrease in wave frequency.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Mechanics

Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory

Reza Asrari, Farzad Ebrahimi, Mohammad Mahdi Kheirikhah, Keivan Hosseini Safari

Summary: This article investigates the buckling characteristics of a functionally graded magneto-electro-thermo-elastic nanoshell based on the nonlocal strain gradient theory. The nanoshell is subjected to external fields, and the governing equations are derived and solved using Galerkin's approach, exploring the dependence of buckling behavior on various factors.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Mechanics

Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments

Seyed Sajad Mirjavadi, Masoud Forsat, Mohammad Reza Barati, A. M. S. Hamouda

Summary: This study investigates the nonlinear free vibrations of porous functionally graded annular spherical shell segments and highlights the factors affecting the vibration characteristics.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Mechanics

Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions

Seyed Sajad Mirjavadi, Masoud Forsat, Mohammad Reza Barati, A. M. S. Hamouda

Summary: This article investigates the nonlinear vibration of variable thickness cylindrical panels made of multi-scale composite materials. The study defines the elastic properties of the materials and considers the changes in panel thickness. By using Jacobi elliptic functions to solve the governing equations, the exact frequency-amplitude curves of the panels are obtained. The study also examines the effects of various factors on the frequency-amplitude curves.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Mechanics

Analysis of nonlinear vibrations of CNT-/fiberglass-reinforced multi-scale truncated conical shell segments

Seyed Sajad Mirjavadi, Masoud Forsat, Mohammad Reza Barati, A. M. S. Hamouda

Summary: This research examines the nonlinear free vibration behavior of truncated conical shell segments made from multi-scale epoxy/carbon nanotube/fiberglass material. A 3D Mori-Tanaka micro-mechanic method is used to define the hybrid material properties by incorporating random dispersion of carbon nanotubes and parallel alignment of glass fibers. The study focuses on the effects of fiber volume, fiber directions, semi-vertex angle, CNT weight fraction, and CNT aspect ratio on the nonlinear free vibrations of the multi-scale truncated conical shell segments.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Physics, Multidisciplinary

Vibration analysis of multi-scale hybrid nanocomposite shells by considering nanofillers' aggregation

Farzad Ebrahimi, Ali Dabbagh

Summary: This study conducts a free oscillation analysis on shells made of multi-scale hybrid nanocomposites, focusing on the destructive effect of nanofiller agglomeration on the system's dynamics. The equivalent material properties of the hybrid nanocomposite are obtained through a bi-level micromechanical procedure. The influence of agglomerated carbon nanotubes (CNTs) on the stiffness of the nanocomposite is considered using the Eshelby-Mori-Tanaka method. The governing equations for the system are derived, and the natural frequencies are obtained using Galerkin's method. The study reveals that hybrid nanocomposite shells may experience resonance phenomenon in low-frequency range, especially when the impact of CNTs' aggregation is neglected.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Physics, Multidisciplinary

Wave propagation response of agglomerated multi-scale hybrid nanocomposite plates

Farzad Ebrahimi, Ali Seyfi

Summary: This paper investigates the wave propagation analysis of multi-scale hybrid nanocomposite plates, taking into account the influence of nanoparticle aggregation. Micromechanical methods are used to calculate the effective material properties, while a refined shear deformation theory is implemented for motion relations. The governing equations are derived using the principle of Hamilton and solved analytically. The effects of various parameters on phase velocity and wave frequency are examined, showing that the mechanical response decreases when nanotubes are covered by clusters.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Physics, Multidisciplinary

Wave propagation analysis of smart inhomogeneous piezoelectric nanosize beams rested on an elastic medium

Farzad Ebrahimi, Ali Seyfi

Summary: This paper mainly focuses on analyzing the wave propagation of sigmoid functionally graded (SFG) piezoelectric nanobeams on an elastic foundation using the nonlocal elasticity theory. The small-scale effect is considered by employing Eringen's nonlocal elasticity theory (ENET). Zinc oxide and lithium niobate are assumed to be the constituent materials of the nanoscale structure. The nonlocal governing equations of the piezoelectric nanobeam are derived using Hamilton's principle and the Euler-Bernoulli beam theory, and then solved analytically. The effects of various parameters on the wave frequency and phase velocity of the SFG piezoelectric nanobeam are examined and presented in a series of illustrations.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Physics, Multidisciplinary

Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories

M. S. H. Al-Furjan, Mostafa Habibi, Farzad Ebrahimi, Kianoosh Mohammadi, Hamed Safarpour

Summary: This paper investigates the wave propagation behavior of a high-speed rotating laminated nanocomposite cylindrical shell using classic, strain gradient, nonlocal and nonlocal strain gradient theories. The results show that wave number, angular velocity, and different types of laminated composites have a significant impact on the phase velocity of the nanocomposite structure.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Mechanics

Static stability analysis of multi-scale hybrid agglomerated nanocomposite shells

Farzad Ebrahimi, Ali Dabbagh, Abbas Rastgoo

Summary: This paper investigates the buckling problem of a multi-scale hybrid nanocomposite shell for the first time while the cylinder is supposed to be rested on an elastic substrate. The effects of nanofillers' agglomeration and the equivalent material properties of the carbon nanotube-reinforced (CNTR) nanocomposite are studied. The results provide insights into the failure behavior and propose strategies to enhance the buckling resistance of the nanocomposite structure.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

Article Physics, Multidisciplinary

Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment

Farzad Ebrahimi, Ali Seyfi, Mostafa Nouraei, Parisa Haghi

Summary: The study investigates wave propagation in simply supported functionally graded beams exposed to magneto-thermal environments and embedded on two-parameter elastic foundation. The influence of various parameters on wave frequency and phase velocity of the beams is compared and thoroughly discussed to highlight key findings.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Computer Science, Interdisciplinary Applications

Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow

M. S. H. Al-Furjan, Seyedeh Yasaman Bolandi, Mostafa Habibi, Farzad Ebrahimi, Guojin Chen, Hamed Safarpour

Summary: This study presents critical angular velocity, critical velocity of fluid flow, and vibration control analysis of a rotating multi-hybrid nanocomposite reinforced cylindrical microshell. By utilizing a non-classical model, various factors such as Coriolis and centrifugal effects, strains and stresses, and external voltage are considered. The study also applies the rule of mixtures and a modified Halpin-Tsai theory for elasticity modulus, and utilizes a Proportional-Derivative (PD) controller for sensor output control.

ENGINEERING WITH COMPUTERS (2022)

Article Mechanics

Assessment of nonlinear vibrations of thin plates undergoing large deflection and moderate rotation using Jacobi elliptic functions

Mohammad Reza Barati, Hossein Shahverdi

Summary: In this article, the nonlinear free/forced vibrations of a plate undergoing large deflection and moderate rotation were investigated using Jacobi elliptic functions. The results showed that the conventional approximate solutions based on single-harmonic assumption were inadequate, while the Jacobi elliptic function method considered higher-order harmonics and provided a more accurate solution.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

Article Engineering, Chemical

Analysis of Nonlinear Dynamic Behavior of Sandwich Panels with Cellular Honeycomb Cores and Nano-Composite Skins

Mohammad Reza Barati, Hossein Shahverdi, Behzad Hakimelahi

Summary: The research examines the nonlinear free/forced vibrational behavior of a sandwich plate with graphene platelet reinforced face sheets, proposing the use of GPL-reinforced nanocomposites to enhance mechanical performance. The study finds that the dispersion type, amount, and thickness of GPL in the face sheets can affect the free and forced vibrations of the honeycomb sandwich panel.

TRANSPORT IN POROUS MEDIA (2022)

Article Physics, Multidisciplinary

Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns

Mohammad Reza Barati, Hossein Shahverdi

Summary: This paper obtained the material properties of architected meta-material plates with different cell patterns through numerical calibration. An artificial neural network was developed to derive a meta-material shape factor for all possible cell geometries. Finite element simulations confirmed the theoretical model and parameter studies examined the influences of the periodic design patterns.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

No Data Available