4.8 Article

Acoustic tweezers via sub-time-of-flight regime surface acoustic waves

Journal

SCIENCE ADVANCES
Volume 2, Issue 7, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1600089

Keywords

-

Funding

  1. Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center [IDG11300101]
  2. SUTD Start-up Research Grant [SREP13053]

Ask authors/readers for more resources

Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Nanoscience & Nanotechnology

The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices

Citsabehsan Devendran, David J. Collins, Adrian Neild

Summary: Surface acoustic wave (SAW) micromanipulation offers modularity, easy integration into microfluidic devices and a high degree of flexibility. However, reducing the threshold for manipulating smaller particles is a major challenge. The novel excitation configuration based on diffractive-acoustic SAW (DASAW) actuation shows promise in reducing the critical minimum particle size that can be manipulated, with the ability to tune the streaming magnitude by changing the channel height.

MICROFLUIDICS AND NANOFLUIDICS (2022)

Article Chemistry, Analytical

Tunable and Dynamic Optofluidic Microlens Arrays Based on Droplets

Li Liang, Xuejia Hu, Yang Shi, Shukun Zhao, Qinghao Hu, Minhui Liang, Ye Ai

Summary: This paper introduces a novel optofluidic method for fabricating tunable liquid microlens arrays (MLAs) and demonstrates their ability to achieve tunable focusing and high-quality imaging. The focal length of the MLAs can be adjusted by changing the refractive index of the liquid droplets, showing promising opportunities for various applications.

ANALYTICAL CHEMISTRY (2022)

Article Chemistry, Multidisciplinary

3D Acoustofluidics via Sub-Wavelength Micro-Resonators

William Sean Harley, Kirill Kolesnik, Mingxin Xu, Daniel Edward Heath, David John Collins

Summary: This work demonstrates a method to generate designed and highly localized acoustic fields using 3D resonant mass-spring microstructures, enabling rapid and spatially defined controllable micromanipulation. This sub-wavelength, 3D acoustofluidic approach has potential applications in sample preparation, cell analysis, and diagnostics.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Sound-Speed Modifying Acoustic Metasurfaces for Acoustic Holography

Mingxin Xu, William S. Harley, Zhichao Ma, Peter V. S. Lee, David J. Collins

Summary: Acoustic metasurfaces with complex 3D structures complicate their fabrication and applicability to higher frequencies, but an ultrathin metasurface approach utilizing planarized micropillars in a discretized phase array is demonstrated here. This subwavelength metasurface can be easily produced via a single-step etching process and is suitable for megahertz-scale applications. The flexibility of this approach is further demonstrated in the production of complex acoustic patterns via acoustic holography. This metasurface approach, combined with predictive models, has broad potential for robust, high-frequency acoustic manipulation in various applications.

ADVANCED MATERIALS (2023)

Article Biochemical Research Methods

Glass-embedded PDMS microfluidic device for enhanced concentration of nanoparticles using an ultrasonic nanosieve

Bryan Ang, Ankush Sookram, Citsabehsan Devendran, Vincent He, Kellie Tuck, Victor Cadarso, Adrian Neild

Summary: Surface acoustic wave (SAW) driven devices often use polymeric microfluidic channels with low acoustic impedance mismatch to the fluid in contact for precise control of the wave field. This work demonstrates the successful implementation of integrating a glass insert at the ceiling of the PDMS microfluidic channel in a SAW activated nanosieve, resulting in a significant increase in flow rate and maintenance of high capture efficiencies. The glass-inserted device allows for processing larger volume samples, overcoming a main limitation of these devices.

LAB ON A CHIP (2023)

Article Chemistry, Analytical

Bacterial concentration and detection using an ultrasonic nanosieve within a microfluidic device

Bryan Ang, Ruhollah Habibi, Ciaren Kett, Wai Hoe Chin, Kellie L. Tuck, Adrian Neild, Victor J. Cadarso

Summary: Microfluidic concentration technology can detect low concentrations of bacteria in samples, making it suitable for time-sensitive situations such as clinical settings and food quality control. By using a packed bed of micro-particles activated by surface acoustic waves, bacteria can be efficiently captured and recovered for further analysis.

SENSORS AND ACTUATORS B-CHEMICAL (2023)

Article Biophysics

Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis

Minhui Liang, Qiang Tang, Jianwei Zhong, Ye Ai

Summary: Microfluidics provides a powerful platform for biological analysis by precisely manipulating fluids and microparticles. The imaging and impedance cell analyzer (IM2Cell) introduced here combines single cell level impedance analysis and hydrodynamic mechanical phenotyping, demonstrating multi-stress level mechanical phenotyping capabilities. IM2Cell can characterize cell diameter, deformability responses, and electrical properties, providing high-dimensional information about subcellular components. It has been validated for different cell lines and shows potential for deformability studies of PBMC subpopulations.

BIOSENSORS & BIOELECTRONICS (2023)

Article Chemistry, Physical

DUPLETS: Deformability-Assisted Dual-Particle Encapsulation Via Electrically Activated Sorting

Jianwei Zhong, Minhui Liang, Ye Ai

Summary: Co-encapsulation of bead carriers and biological cells in microfluidics has become a powerful technique for various biological assays in single-cell genomics and drug screening. However, current co-encapsulation approaches limit the effective throughput due to a trade-off between cell/bead pairing rate and probability of multiple cells in individual droplets. The DUPLETS system is reported to overcome this problem by differentiating the encapsulated content in individual droplets and sorting out targeted droplets via a combined screening of mechanical and electrical characteristics.

SMALL METHODS (2023)

Article Engineering, Biomedical

Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting

Jianwei Zhong, Minhui Liang, Qiang Tang, Ye Ai

Summary: By introducing a label-free selectable cell quantity encapsulation in droplets sorting system, the purity and throughput of single-cell droplets can be improved. This system combines electrical impedance based screening with biocompatible acoustic sorting to achieve high efficiency and throughput while removing multi-cells and empty droplets.

MATERIALS TODAY BIO (2023)

Article Chemistry, Physical

A novel droplet-based approach to study phase transformations in lyotropic liquid crystalline systems

Vincent He, Victor J. Cadarso, Susanne Seibt, Ben J. Boyd, Adrian Neild

Summary: In this study, a microfluidic approach was used to prepare different aqueous and lipid droplets and induce phase transformations in the liquid medium. The results showed that when the lipid droplets and aqueous droplets coalesced, distinct structures with different compositions formed on the two sides of the merged droplet. Through diffusion limited interface, water molecules gradually hydrated the lipid portion, leading to a series of phase transformations. This study provides a new approach for studying the kinetics of phase transformations and identifying non-equilibrium phases in droplet-based lyotropic liquid systems.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2023)

Article Chemistry, Multidisciplinary

Rapid and Accurate Antimicrobial Susceptibility Testing Using Label-Free Electrical Impedance-Based Microfluidic Platform

Jiahong Chen, Jianwei Zhong, Yifu Chang, Yinning Zhou, Seok Hwee Koo, Thean Yen Tan, Hongtao Lei, Ye Ai

Summary: Antimicrobial resistance is a serious threat to global public health. A label-free electrical impedance-based microfluidic platform has been designed to expedite and streamline antimicrobial susceptibility testing (AST) for clinical practice, with a rapid 2-minute AST assay at the single-bacterium level. This platform enables accurate analysis of bacterial viability and determination of antimicrobial resistance.

SMALL (2023)

Article Chemistry, Analytical

Thomson-Einstein's Tea Leaf Paradox Revisited: Aggregation in Rings

Kirill Kolesnik, Daniel Quang Le Pham, Jessica Fong, David John Collins

Summary: Researchers have found that a particle focusing spot in the center of a rotating fluid is formed by the secondary flow. The rotational velocity and the shape of the vessel significantly influence the particle's equilibrium position. This study demonstrates the formation of a single focusing spot in the center of the vessel and the repeatable formation of stable ring-shaped particle arrangements.

MICROMACHINES (2023)

Article Biochemical Research Methods

Sub-wavelength acoustic stencil for tailored micropatterning

Kirill Kolesnik, Philipp Segeritz, Daniel J. Scott, Vijay Rajagopal, David J. Collins

Summary: Acoustofluidic devices can manipulate particles and cells in arbitrary configurations at the microscale without complex patterning. This approach is enabling for cell studies and tissue engineering applications.

LAB ON A CHIP (2023)

Article Biochemical Research Methods

Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry

Jiahong Chen, Jianwei Zhong, Hongtao Lei, Ye Ai

Summary: This study presents a novel microfluidic electrical impedance-based multidimensional single-bacterium profiling system that can detect bacteria in a wide concentration range and accurately differentiate their viability and gram types. The system utilizes multi-frequency impedance quantification to analyze the size, concentration, and membrane impedance of bacteria in a single flow-through interrogation. The system has been demonstrated to have a wide bacterial counting range and can rapidly and accurately discriminate the viability and gram types of bacteria in a label-free manner.

LAB ON A CHIP (2023)

Article Biochemical Research Methods

Surface acoustic wave-driven pumpless flow for sperm rheotaxis analysis

Junyang Gai, Citsabehsan Devendran, Adrian Neild, Reza Nosrati

Summary: By using an acoustic streaming device, the study investigated the rheotaxis behavior of sperm in microchannels and found that changes in flow velocity could affect the trajectory of sperm.

LAB ON A CHIP (2022)

No Data Available