4.4 Article

Gravitational instability due to the dissolution of carbon dioxide in a Hele-Shaw cell

Journal

PHYSICAL REVIEW FLUIDS
Volume 1, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.1.064301

Keywords

-

Ask authors/readers for more resources

We present an experimental study of the gravitational instability triggered by dissolution of carbon dioxide through a water-gas interface. We restrict the study to vertical parallelepipedic Hele-Shaw geometries, for which the thickness is smaller than the other dimensions. The partial pressure of carbon dioxide is quickly increased, leading to a denser layer of CO2-enriched water underneath the surface. This initially one-dimensional diffusive layer destabilizes through a convection-diffusion process. The concentration field of carbon dioxide, which is visualized by means of a pH-sensitive dye, shows a fingering pattern whose characteristics (wavelength and amplitude growth rate) are functions of the Rayleigh (Ra) and the Darcy (Da) numbers. At low Rayleigh numbers, the growth rate and the wave numbers are independent of the Rayleigh number and in excellent agreement with the classical results obtained numerically and theoretically in the Darcy regime. However, above a threshold of Ra root Da of the order of 10, the growth rate and the wave number strongly decrease due to the Brinkman term associated with the viscous diffusion in the vertical and longitudinal directions. In this Darcy-Brinkman regime, the growth rate and the wave number depend only on the thickness-based Rayleigh number Ra root Da. The classical Rayleigh-Taylor theory including the Brinkman term has been extended to this diffusive gravitational instability and gives an excellent prediction of the growth rate over four decades of Rayleigh numbers. However, the Brinkman regime seems to be valid only until Ra root Da = 1000. Above this threshold, the transverse velocity profile is no longer parabolic, which leads to an overestimation of the wave number by the theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Does shaking increase the pressure inside a bottle of champagne?

A. Vreme, B. Pouligny, F. Nadal, G. Liger-Belair

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2015)

No Data Available