4.5 Article

Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
Volume 121, Issue 8, Pages 1472-1487

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JE005078

Keywords

-

Funding

  1. National Aeronautics and Space Administration [NNX14AG39G]
  2. NASA Mars Science Laboratory Project

Ask authors/readers for more resources

Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OCIO, we find that an OCIO flux as low as 3.2 x 10(7) molecules cm(-2) s(-1) sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available