4.7 Article

Microstructure and mechanical properties evolution of friction stir spot welded high-Mn twinning-induced plasticity steel

Journal

MATERIALS & DESIGN
Volume 91, Issue -, Pages 378-387

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2015.12.001

Keywords

TWIP; Steel; Friction stir spot welding; Microstructure; EBSD; Mechanical properties

Funding

  1. Egyptian State Ministry for Scientific Research [3926, 5304]
  2. EPSRC [EP/L025213/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/L025213/1] Funding Source: researchfish

Ask authors/readers for more resources

Friction stir spot welding of high-Mn twinning-induced plasticity steel was studied. Welds were made at different tool rotation speeds and constant plunge rate and dwell time. The microstructure evolution was examined by optical microscopy, scanning electron microscopy and electron backscattered diffraction technique. In addition, the microhardness distribution and tensile-shear load bearing capacity were measured. The friction stir spot welding process successfully produced high integrity completely defect-free joints at all the proposed welding parameters. However, the complex plastic deformation and high thermal cycle experienced had a significant effect on the weld region, which consisted of three distinct zones. The flow transition zone, stir zone and torsion zone were all characterized by a recrystallized grain structure. The heat affected zone was characterized by a coarse grain structure as a result of grain growth caused by the high thermal cycles experienced. The hardness was significantly affected by friction stir spot welding, resulting in a softened region in the joint area. The softening increased as the rotation rate increased. The maximum peak tensile shear load of 13 kN was obtained at 750 rpm, and a considerable amount of extension was obtained in all the joints with a maximum of 4 mm at 500 rpm. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available