3.9 Article

Structural and optoelectronic properties of glucose capped Al and Cu doped ZnO nanostructures

Journal

MATERIALS SCIENCE-POLAND
Volume 34, Issue 1, Pages 69-78

Publisher

SCIENDO
DOI: 10.1515/msp-2016-0030

Keywords

d-value; doping; defects; band gap; Burstein-Moss effect; conductivity

Ask authors/readers for more resources

Al and Cu doped ZnO nanoparticles are considered as appropriate for modulation of structural and optoelectronic properties. Al atoms are found to substitute the host Zn whereas Cu dopants mainly segregate in grain boundaries and thereby determine the optical properties. The undoped as well as Al and Cu doped ZnO exhibit spherical well defined particles. The spherical nanoparticles change to rod type structures on co-doping. The average particle size decreases on doping what consequently results in an increment in band gap. Blue shift in UV absorption is governed by the functional group of glucose; further blue shift occurring on metal doping may be attributed to Burstein-Moss effect. PL spectra of doped and undoped ZnO show a dominant near band gap UV emission along with visible emission owing to the defects. The PL peak intensity increases on doping with Cu and Al. The linear I-V characteristics indicate the ohmic behavior of ZnO nanostructures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available