4.1 Article

Characterizing a turbidite system in Canterbury Basin, New Zealand, using seismic attributes and distance-preserving self-organizing maps

Journal

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/INT-2015-0094.1

Keywords

-

Funding

  1. Attribute-Assisted Seismic Processing and Interpretation (AASPI) Consortium at the University of Oklahoma

Ask authors/readers for more resources

Recent developments in seismic attributes and seismic facies classification techniques have greatly enhanced the capability of interpreters to delineate and characterize features that are not prominent in conventional 3D seismic amplitude volumes. The use of appropriate seismic attributes that quantify the characteristics of different geologic facies can accelerate and partially automate the interpretation process. Self-organizing maps (SOMs) are a popular seismic facies classification tool that extract similar patterns embedded with multiple seismic attribute volumes. By preserving the distance in the input data space into the SOM latent space, the internal relation among data vectors on an SOM facies map is better presented, resulting in a more reliable classification. We have determined the effectiveness of the modified algorithm by applying it to a turbidite system in Canterbury Basin, offshore New Zealand. By incorporating seismic attributes and distance-preserving SOM classification, we were able to observe architectural elements that are overlooked when using a conventional seismic amplitude volume for interpretation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available