4.8 Review

Impact of the MICA-129Met/Val Dimorphism on NKG2D-Mediated Biological Functions and Disease Risks

Journal

FRONTIERS IN IMMUNOLOGY
Volume 7, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2016.00588

Keywords

NK cells; T cells; activating NK receptor; costimulation; single-nucleotide polymorphism; autoimmune diseases; cancer; hematopoietic stem cell transplantation

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [GRK 1034, SFB 1002, TP C05]
  2. European Union [FP7-PEOPLE-2012-ITN-315963]
  3. Open Access Publication Funds of the Gottingen University

Ask authors/readers for more resources

The major histocompatibility complex (MHC) class I chain-related A (MICA) is the most polymorphic non-classical MHC class I gene in humans. It encodes a ligand for NKG2D (NK group 2, member D), an activating natural killer (NK) receptor that is expressed mainly on NK cells and CD8(+) T cells. The single-nucleotide polymorphism (SNP) rs1051792 causing a valine (Val) to methionine (Met) exchange at position 129 of the MICA protein is of specific interest. It separates MICA into isoforms that bind NKG2D with high (Met) and low affinities (Val). Therefore, this SNP has been investigated for associations with infections, autoimmune diseases, and cancer. Here, we systematically review these studies and analyze them in view of new data on the functional consequences of this polymorphism. It has been shown recently that the MICA-129Met variant elicits a stronger NKG2D signaling, resulting in more degranulation and IFN-gamma production in NK cells and in a faster costimulation of CD8(+) T cells than the MICA-129Val variant. However, the MICA-129Met isoform also downregulates NKG2D more efficiently than the MICA-129Val isoform. This downregulation impairs NKG2D-mediated functions at high expression intensities of the MICA-Met variant. These features of the MICA-129Met/Val dimorphism need to be considered when interpreting disease association studies. Particularly, in the field of hematopoietic stem cell transplantation, they help to explain the associations of the SNP with outcome including graft-versus-host disease and relapse of malignancy. Implications for future disease association studies of the MICA-129Met/Val dimorphism are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available