4.7 Article

L-Lysine templated CaCO3 precipitated to flax develops flowery crystal structures that improve the mechanical properties of natural fibre reinforced composites

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2015.04.016

Keywords

Polymer-matrix composites (PMCs); Fibres; Fibre/matrix bond

Ask authors/readers for more resources

We describe how the mechanical properties of natural fibre composites can be improved by precipitating coral-like coatings to the surfaces of reinforcing fibres. We consider three amino-acid templates (L-lysine, glycine and beta-alanine) on calcium carbonate growth to natural fibres. L-Lysine forms reticulate flower-like crystals, beta-alanine forms globular crystals and glycine forms blocky crystals. These coralised fibres are used to reinforce styrene butadiene rubber and when compared against untreated-fibre reinforced composites; we find that at sufficiently high concentrations L-lysine templated mineral coatings improve composite strength by more than 100%. Contrarily, beta-alanine and glycine templated mineral coatings do not improve the composite strength by more than ca. 60% and ca. 40% respectively. Molecular dynamics simulations elucidate the attachment mechanisms for each amino acid and the highest potential is in the L-lysine templated crystals. Finite element analyses reveal the success of L-lysine templated coatings is due to a heightened fibre tractive resistance. (c) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available