4.7 Article

Buckling of pressurized functionally graded carbon nanotube reinforced conical shells

Journal

COMPOSITE STRUCTURES
Volume 125, Issue -, Pages 586-595

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2015.02.052

Keywords

Linear buckling; Functionally graded carbon nanotube; Reinforced composite; Generalized differential quadrature; Conical shell

Ask authors/readers for more resources

A linear buckling analysis is presented for nanocomposite conical shells reinforced with single walled carbon nanotubes (SWCNTs) subjected to lateral pressure. Material properties of functionally graded carbon nanotube reinforced composite (FG-CNTRC) conical shell are assumed to be graded across the thickness and are obtained based on the modified rule of mixture. Governing equilibrium equations of the shell are obtained based on the Donnell shell theory assumptions consistent with the first order shear deformation shell theory. General form of the equilibrium equations and the complete set of boundary conditions are obtained based on the concept of virtual displacement principle. Shell is assumed to be under lateral pressure. Prebuckling load of the shell is estimated based on the linear membrane analysis. Stability equations of the shell are extracted via the adjacent equilibrium criterion. Resulting stability equations are discreted by suitable trigonometric functions in circumferential direction and generalized differential quadrature method in axial direction. An eigenvalue problem is established to obtain the buckling pressure and circumferential buckling mode of the conical shell. It is shown that, CNTs volume fraction and CNTs distribution law are important factors on the buckling mode and buckling load of the FG-CNTRC conical shells. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available