4.5 Article

Boosting High-Rate Lithium Storage of V2O5 Nanowires by Self-Assembly on N-Doped Graphene Nanosheets

Journal

CHEMELECTROCHEM
Volume 3, Issue 11, Pages 1730-1736

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/celc.201600305

Keywords

V2O5; N-doped graphene; lithium-ion batteries; self-assembly; nanostructures

Funding

  1. National Natural Science Foundation of China [21546015, 21304053]
  2. Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [QA201610]
  3. China Postdoctoral Science Foundation [2015M580095, 2016T90091]

Ask authors/readers for more resources

V2O5 is a promising cathode material for lithium-ion batteries owing to its extremely high theoretical capacity (440 mAhg(-1) when storing 3Li(+) ions and 294 mAhg(-1) when storing 2Li(+)). However, drawbacks such as a strong inclination to aggregate and the low conductivity inherent to nanostructured V2O5 drastically deteriorate its cycle and rate performances. Hence, hybridizing it with a conductive matrix (e.g. graphene) for improved electrochemical performance is an interesting concept. It is well established that heteroatom functionalization (e.g. N doping) can tailor the chemical properties of graphene by influencing the neighboring carbon atoms to enhance conductivity and electrochemical activity. Herein, a high-rate cathode material is fabricated by self-assembly of V2O5 nanowires on N-doped graphene nanosheets, followed by heat treatment to optimize the electrochemical performance. The synergistic effects of the resulting V2O5/N-doped graphene nanohybrids are demonstrated by their excellent rate capability: they deliver very high capacities of 273, 242, 206, 181, and 161 mAhg(-1) at current densities of 100, 200, 500, 1000, and 2000 mAg(-1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available