4.6 Article

In vitro and in vivo evaluation of the effect of nano-sized collagen molecules and nicotinamide on mesenchymal stem cell differentiation

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 4, Issue 22, Pages 3892-3902

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tb00731g

Keywords

-

Ask authors/readers for more resources

Advances and improvements in mesenchymal stromal/stem cells (MSCs) and cell replacement therapies have been promising approaches to treat diabetes mellitus (DM) since their potent capacities for differentiation into various functional cells match the demands of tissue repair and regeneration. The aim of this study is to examine the effects of nano-sized type I collagen molecules in combination with nicotinamide (NCT) and exendin-4 (EX4) on MSC differentiation into insulin-secreting cells in vitro and to evaluate their reparative effects against type 2 diabetes mellitus (T2DM) in vivo. Differentiation of MSCs in the presence of NCT, nano-sized type I collagen molecules and EX4 was represented with insulin production and Nkx6.1/PDX-1 mRNA expression assessed by insulin secretion assay and quantitative RT-PCR. Histopathological and glycosylated haemoglobin (HbA1) analysis was performed to assess reparative effects against T2DM in the rat model. The results revealed that MSCs showed increased differentiation into insulin-secreting cells with higher mRNA expression for Nkx6.1 and early PDX-1 in the presence of NCT and nano-sized type I collagen molecules. Addition of nano-sized type I collagen fibrils increased morphologically islet-like clusters in differentiated cells. T2DM rats reverted to their normal HbA1 values and exhibited structurally repaired islets in the pancreas implanted with NCT/nano-sized collagen I molecule/EX4-incubated differentiated cells. In short, the combined recipe showed reparative actions on the destructive islet of Langerhans in the pancreas coupled with glucoregulatory effects in T2DM rats in vivo. Therefore, MSCs incubated with NCT/EX4 and nano-sized collagen I molecules could be a potential therapy for retrieval of destructed islets and could efficiently regulate blood glucose in T2DM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Materials Science, Biomaterials

An artificial protein cage made from a 12-membered ring

Izabela Stupka, Artur P. Biela, Bernard Piette, Agnieszka Kowalczyk, Karolina Majsterkiewicz, Kinga Borzecka-Solarz, Antonina Naskalska, Jonathan G. Heddle

Summary: Artificial protein cages, such as TRAP-cages, have potential applications in vaccines and drug delivery. TRAP-cages have the ability to control the disassembly conditions by modifying the interface between their building blocks. By using TRAP rings with different numbers of monomers, it is possible to predict the formation of other cages.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Facile one-pot synthesis of flower-like ellagic acid microparticles incorporating anti-microbial peptides for enhanced wound healing

Guo Zhang, Yu Wang, Hua Qiu, Lei Lu

Summary: This study presents a one-pot synthesis method for flower-like AMPs@EAMP particles by combining antimicrobial peptides with ellagic acid, offering enlarged surface area, excellent biocompatibility, and broad-spectrum antibacterial activity. In vivo studies indicate their potential for tissue repair and immune barrier reconstruction.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Transparent silk fibroin film-facilitated infected-wound healing through antibacterial, improved fibroblast adhesion and immune modulation

Jiamei Zhang, Lingshuang Wang, Cheng Xu, Yingui Cao, Shengsheng Liu, Rui L. Reis, Subhas C. Kundu, Xiao Yang, Bo Xiao, Lian Duan

Summary: Pluronic F127 modified silk fibroin film with different types of antibacterial agents could accelerate wound recovery by promoting fibroblast adhesion, eradicating bacteria, and facilitating angiogenesis and re-epithelialization.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Polyarylether-based COFs coordinated by Tb3+ for the fluorescent detection of anthrax-biomarker dipicolinic acid

Yinsheng Liu, Mingyue Wang, Yinfei Hui, Lei Sun, Yanrui Hao, Henlong Ren, Hao Guo, Wu Yang

Summary: In this study, a rare-earth hybrid luminescent material was developed for the detection of a biomarker for anthrax. The material showed excellent selectivity and high sensitivity, allowing for the determination of the biomarker in saliva and urine. Additionally, a convenient point-of-care testing method using fluorescent test paper and a smartphone was established for the initial diagnosis of anthrax.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Review Materials Science, Biomaterials

Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications

Wenshuai Yang, Jingsi Chen, Ziqian Zhao, Meng Wu, Lu Gong, Yimei Sun, Charley Huang, Bin Yan, Hongbo Zeng

Summary: Injectable hydrogels with shear-thinning and/or in situ formation properties offer distinct advantages in bioengineering applications, as they can be directly delivered to target sites, possess self-healing abilities, and simplify the implantation process.

JOURNAL OF MATERIALS CHEMISTRY B (2024)