4.6 Article

Long-term thermally stable organic solar cells based on cross-linkable donor-acceptor conjugated polymers

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 4, Issue 23, Pages 9286-9292

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta01450j

Keywords

-

Funding

  1. International Science and Technology Cooperation Program of China [2015DFG62680]
  2. Science and Technology Commission of Shanghai Municipality [13JC1407000]
  3. National Natural Science Foundation of China [21474129, 21504080]
  4. Chinese Academy of Sciences
  5. Zhongzhou University

Ask authors/readers for more resources

The real-life application of polymer solar cells (PSCs) requires both a high power conversion efficiency (PCE) and a long enough lifetime. In order to avoid microstructure evolution and enhance device thermal stability, various different amounts of terminal vinyl moieties have been integrated into the side chains of poly(benzo [1,2-b:4,5-b']dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione), a previously reported high performance donor-acceptor photovoltaic polymer, to produce a series of crosslinkable polymers named PBDTTPD-V-x (where x is defined as the molar content of vinyl units). It has been found that the larger the vinyl content the polymer contains, the larger the amount of polymer remaining on the substrate after thermal crosslinking and solvent washing. However, the optimized PSC device based on such a polymer and [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) displayed a decreased efficiency. These studies have discovered that a vinyl content as small as 2.5% is enough for this family of crosslinkable polymers to achieve effective crosslinking, while at the same time maintaining their high photovoltaic performance. The optimized PBDTTPD-V-0.025/PC71BM device showed a power conversion efficiency (PCE) of 6.06% after thermal crosslinking, which represents the highest recorded efficiency among PSC devices with crosslinked active layers. Furthermore, this crosslinked device successfully retained 91% of its initial PCE after thermal treatment at 150 degrees C for 40 h, which was much better than the noncrosslinkable PBDTTPD-V-0/PC71BM cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available