4.7 Article

Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 127, Issue -, Pages 256-265

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2015.01.053

Keywords

Adsorption; beta-Blockers; Carrageenan; Kinetic modeling; Metoprolol; Pharmaceuticals

Funding

  1. European Union (European Social Fund - ESF)
  2. Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Research Funding Program Excellence II (Aristeia II) [4199]

Ask authors/readers for more resources

In the present study, carrageenan microparticles were synthesized using spray-drying method and used as biosorbents for the removal of pharmaceutical compounds. The cross-linking reaction of iota-carrageenan (iCAR) and kappa-carrageenan (kCAR) with glutaraldehyde (GLA) at different concentrations (2.5% or 5% (w/w), mass of GLA per mass of CAR) was studied (iCAR/GLA2.5, iCAR/GLA5, kCAR/GLA2.5, kCAR/GLA5). The physicochemical properties of the novel cross-linked polymers were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Swelling studies were in accordance with the polymer properties, showing the lowest swelling degree (19%) by using the iCAR/GLA5 microparticles. The optimal kCAR/GLA5 microparticles were successfully employed for the removal of Metoprolol (MTPL) from aqueous samples. The adsorption capacity of the adsorbents was investigated using a batch adsorption procedure and the kinetics and thermodynamics of the adsorption process were further investigated. It was found that the adsorption isotherms agree well with the Langmuir-Freundlich model. The maximum adsorption capacity (Q(m)) was achieved in pH 6, whereas an increase of Q(m) was observed increasing the temperature (from 109 at 20 degrees C to 178 mg/g at 40 degrees C). Kinetic studies showed that the adsorption process on iCAR/GLA5 microparticles followed pseudo-second-order rate mechanism. Finally, a new phenomenological model of the adsorption process was proposed in order to extract information on the relevant sub-processes. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available