4.7 Article

Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 128, Issue -, Pages 370-378

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2015.02.034

Keywords

CMC; Polymeric micelles; PIT emulsification; Steric stability; Nanopesticides; Poly(ethylene glycol)

Funding

  1. Defence Research & Development Organization - Life Sciences Research Board, Government of India [DLS/81/48222/LSRB-250/BTB/2012]

Ask authors/readers for more resources

The utilization of increased dosage of insect repellents to overcome mosquito resistance has raised environmental concerns globally. In accord to this, we have formulated an efficacious, water-dispersive, nanometric formulation of a poor water-soluble insect repellent, diethylphenylacetamide (DEPA) by poly(ethylene glycol) (PEG) polymerization followed by PIT emulsification method. The critical micelle concentration of PEG in the spontaneously emulsified conventional DEPA droplets was determined, based on the droplets physical stability. Subjecting them to PIT emulsification yielded monodispersed polymeric nanomicelles of DEPA (Nano DEPA) with hydrodynamic mean diameter of 153.74 rim. The high-resolution scanning and transmission electron microscopic studies revealed the characteristic core-shell structure of micelle. The comparative efficacy of Bulk DEPA and Nano DEPA was evaluated by larvicidal and WHO cone bioassay against the Japanese encephalitis vector Culex tritaeniorhynchus. The median lethal concentrations (48 h) for 3rd instars C. tritaeniorhynchus larvae were found to be 0.416 mg/L for Bulk DEPA and 0.052 mg/L for Nano DEPA, respectively. The median knockdown concentrations (60 min) for the two to three-day-old, sucrose-fed, female adult mosquitoes were 5.372% (v/v) and 3.471% (v/v) for Bulk and Nano DEPA, respectively. Further investigation by histopathological and biochemical studies propound that Nano DEPA exerted better bioefficacy as comparative to its bulk form even at minimal exposure concentrations. Hence, Nano DEPA will serve as an effective alternate in controlling the vector expansion with reduced dosage. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available