4.6 Article

Functionalization of recombinant amelogenin nanospheres allows their binding to cellulose materials

Journal

BIOTECHNOLOGY JOURNAL
Volume 11, Issue 10, Pages 1343-1351

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201600381

Keywords

Amelogenin; Biomaterial; Cellulose; Nanoparticles; Protein

Funding

  1. Swedish foundation O.E. och Edla Johanssons vetenskapliga stiftelse

Ask authors/readers for more resources

Protein engineering to functionalize the self-assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self-assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres approximate to 35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self-assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached approximate to 15 mg/g Avicel, which corresponds to 4.2 to 6.3 x 10(-7) mole/m(2). By mixing rh174 and rh174CBD, and then inducing self-assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available