4.7 Article

4-Aminopyridine sequesters intracellular Ca2+ which triggers exocytosis in excitable and non-excitable cells

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep34749

Keywords

-

Funding

  1. Scholarship for Young Scientists

Ask authors/readers for more resources

4-aminopyridine is commonly used to stimulate neurotransmitter release resulting from sustained plasma membrane depolarization and Ca2+-influx from the extracellular space. This paper elucidated unconventional mechanism of 4-aminopyridine-stimulated glutamate release from neurons and non-neuronal cells which proceeds in the absence of external Ca2+. In brain nerve terminals, primary neurons and platelets 4-aminopyridine induced the exocytotic release of glutamate that was independent of external Ca2+ and was triggered by the sequestration of Ca2+ from intracellular stores. The initial level of 4-aminopyridine-stimulated glutamate release from neurons in the absence or presence of external Ca2+ was subequal and the difference was predominantly associated with subsequent tonic release of glutamate in Ca2+-supplemented medium. The increase in [Ca2+](i) and the secretion of glutamate stimulated by 4-aminopyridine in Ca2+-free conditions have resulted from Ca2+ efflux from endoplasmic reticulum and were abolished by intracellular free Ca2+ chelator BAPTA. This suggests that Ca2+ sequestration plays a profound role in the 4-aminopyridine-mediated stimulation of excitable and non-excitable cells. 4-Aminopyridine combines the properties of depolarizing agent with the ability to sequester intracellular Ca2+. The study unmasks additional mechanism of action of 4-aminopyridine, an active substance of drugs for treatment of multiple sclerosis and conditions related to reduced Ca2+ efflux from intracellular stores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available