4.3 Article

Multicellular spheroids from normal and neoplastic thyroid tissues as a suitable model to test the effects of multikinase inhibitors

Journal

ONCOTARGET
Volume 8, Issue 6, Pages 9752-9766

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.14187

Keywords

multicellular spheroids; thyroid cancer; multi-tyrosine kinase inhibitors; SP600125; ROCK

Ask authors/readers for more resources

Multicellular three-dimensional (3D) spheroids represent an experimental model that is intermediate in its complexity between monolayer cultures and patients' tumor. In the present study, we characterize multicellular spheroids from papillary (PTC) and follicular (FTC) thyroid cancers and from the corresponding normal tissues. We show that these 3D structures well recapitulate the features of the original tissues, in either the differentiated and stem-like components. As a second step, we were aimed to test the effects of a small multikinase inhibitor, SP600125 (SP), previously shown to efficiently induce cell death in undifferentiated thyroid cancer monolayer cultures. We demonstrate the potent effect of SP on cell growth and survival in our 3D multicellular cultures. SP exerts its main effects through direct and highly significant inhibition of the ROCK pathway, known to be involved in the regulation of cell migration and beta-catenin turnover. Consistently, SP treatment resulted in a significant decrease in beta-catenin levels with respect to basal conditions in tumor but not in normal spheroids, indicating that the effect is promisingly selective on tumor cells. In conclusion, we provide the morphological and molecular characterization of thyroid normal and tumor spheroids. In this 3D model we tested in vitro the effects of the multikinase inhibitor SP and further characterized its mechanism of action in both normal and tumor spheroids, thus making it an ideal candidate for developing new drugs against thyroid cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available