4.3 Article

KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment

Journal

ONCOTARGET
Volume 7, Issue 21, Pages 30781-30796

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.8761

Keywords

Ca2+ activated K+ channels; malignant glioma; apoptosis; cell cycle; migration

Funding

  1. AIRC [IG2012-12774, IG2015-16699]
  2. National Institute of General Medicine [GM076063]

Ask authors/readers for more resources

Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients. Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available