4.7 Article

Sake Protein Supplementation Affects Exercise Performance and Biochemical Profiles in Power-Exercise-Trained Mice

Journal

NUTRIENTS
Volume 8, Issue 2, Pages -

Publisher

MDPI AG
DOI: 10.3390/nu8020106

Keywords

strength and conditional training; power exercise training; sake protein; anti-fatigue; exercise performance

Ask authors/readers for more resources

Exercise and fitness training programs have attracted the public's attention in recent years. Sports nutrition supplementation is an important issue in the global sports market. Purpose: In this study, we designed a power exercise training (PET) program with a mouse model based on a strength and conditional training protocol for humans. We tested the effect of supplementation with functional branched-chain amino acid (BCAA)-rich sake protein (SP) to determine whether the supplement had a synergistic effect during PET and enhanced athletic performance and resistance to fatigue. Methods: Male ICR mice were divided into three groups (n = 8 per group) for four-week treatment: sedentary controls with vehicle (SC), and PET and PET groups with SP supplementation (3.8 g/kg, PET + SP). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time as well as changes in body composition and anti-fatigue activity levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise. The biochemical parameters were measured at the end of the experiment. Results: four-week PET significantly increased grip strength and exhaustive swimming time and decreased epididymal fat pad (EFP) weight and area. Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid (UA) were significantly increased. PET + SP supplementation significantly decreased serum lactate, ammonia and CK levels after the 15-min swimming exercise. The resting serum levels of AST, ALT, CREA and UA were all significantly decreased with PET + SP. Conclusion: The PET program could increase the exercise performance and modulate the body composition of mice. PET with SP conferred better anti-fatigue activity, improved biochemical profiles, and may be an effective ergogenic aid in strength training.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available