4.3 Article Proceedings Paper

Configurational energy and the formation of mixed flowing/powder snow and ice avalanches

Journal

ANNALS OF GLACIOLOGY
Volume 57, Issue 71, Pages 179-188

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.3189/2016AoG71A464

Keywords

avalanches

Ask authors/readers for more resources

A long-standing problem in avalanche dynamics is to model the flow of a mixed flowing/powder avalanche. Here we use the thermodynamic concept of configurational energy to describe the blow-out of air from the avalanche core. Configurational energy is the mean potential energy associated with the location of snow and ice particles in the avalanche core. As such, configurational energy determines the avalanche flow density. Expansion of the particle ensemble reduces the flow density and leads to the intake of air. Compression of the particle ensemble causes the blow-out of the intaken air, now laden with ice dust. Once formed, the cloud moves independently of the flowing avalanche with the initial momentum acquired in the core. Configurational energy changes in the avalanche core are therefore intimately related to the formation of the powder suspension cloud. In this paper we use the concept of configurational energy to predict the mass of air taken into and blown out of the core. This requires calculating the dispersive pressure arising from random particle movements and configuration changes related to the expansion and collapse of the flowing particle ensemble. The ice avalanche that struck the Everest base camp on 25 April 2015 is simulated using the proposed concept.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available