4.8 Article

A substrate-driven allosteric switch that enhances PDI catalytic activity

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms12579

Keywords

-

Funding

  1. NHLBI [U54 HL112302, R01 HL125275, R01 HL112809, T32 HL007917, T32 HL16324-02, HL116324]
  2. NIDA [DA032476]
  3. NIH-MLPCN programme [U54 HG005032]
  4. Hemostasis and Thrombosis Research Society
  5. DOE Office of Biological and Environmental Research
  6. National Institutes of Health project MINOS [R01GM105404]

Ask authors/readers for more resources

Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a-b-b'-x-a', wherein the thioredoxin-like a and a' domains mediate disulfide bond shuffling and b and b' domains are substrate binding. The b' and a' domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b'. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a' by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available