4.8 Article

Self-cleaning MOF: realization of extreme water repellence in coordination driven self-assembled nanostructures

Journal

CHEMICAL SCIENCE
Volume 7, Issue 3, Pages 2251-2256

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5sc03676c

Keywords

-

Funding

  1. UGC (Govt of India)
  2. CSIR (Govt of India)

Ask authors/readers for more resources

Bio-inspired self-cleaning surfaces have found industrial applications in oil-water separation, stain resistant textiles, anti-biofouling paints in ships etc. Interestingly, self-cleaning metal-organic framework (MOF) materials having high water contact angles and corrosion resistance have not been realized so far. To address this issue, we have used the fundamentals of self-assembly to expose hydrophobic alkyl chains on a MOF surface. This decreases the surface free energy and hence increases hydrophobicity. Coordination directed self-assembly of dialkoxyoctadecyl-oligo-(p-phenyleneethynylene) dicarboxylate (OPE-C-18) with Zn-II in a DMF/H2O mixture leads to a three dimensional supramolecular porous framework {Zn(OPE-C-18)center dot 2H(2)O} (NMOF-1) with nanobelt morphology. Inherently superhydrophobic and self-cleaning NMOF-1 has high thermal and chemical stability. The periodic arrangement of 1D Zn-OPE-C-18 chains with octadecyl alkyl chains projecting outward reduces the surface free energy leading to superhydrophobicity in NMOF-1 (contact angle: 160-162 degrees). The hierarchical surface structure thus generated, enables NMOF-1 to mimic the lotus leaf in its self-cleaning property with an unprecedented tilt angle of 2 degrees. Additionally, superhydrophobicity remains intact over a wide pH range (1-9) and under high ionic concentrations. We believe that such a development in this field will herald a new class of materials capable of water repellent applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available