4.5 Review

Functional nanoparticles for magnetic resonance imaging

Publisher

WILEY
DOI: 10.1002/wnan.1400

Keywords

-

Funding

  1. National Science Foundation [DMR 1255281, DMR 1506937, CHE 1412985]
  2. National Institutes of Health [NIH/R21CA191740]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1255281] Funding Source: National Science Foundation

Ask authors/readers for more resources

Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T-2* superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T-1-based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned on' and off' by radiofrequency saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructures. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. (C) 2016 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available