4.6 Article

Waterfowl Impoundments as Sources of Nitrogen Pollution

Journal

WATER AIR AND SOIL POLLUTION
Volume 227, Issue 10, Pages -

Publisher

SPRINGER
DOI: 10.1007/s11270-016-3082-x

Keywords

Wetlands; Wildlife management; Biogeochemistry; Denitrification

Funding

  1. Carolina Bird Club
  2. Duke University Wetland Center endowment
  3. Duke University Graduate School

Ask authors/readers for more resources

Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations. Nutrients exported from heavily used impoundments by prescribed seasonal drawdown of surface water may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of nutrient export from managed impoundment habitats, we conducted a field study at Mattamuskeet National Wildlife Refuge in North Carolina, USA, which contains 1545 ha of impoundments that drain into hypereutrophic Lake Mattamuskeet. We found that prescribed hydrologic drawdowns of an impoundment exported roughly the same amount of nitrogen (N) as adjacent fertilized agricultural fields on a per-area basis and contributed approximately one fifth of total N load to Lake Mattamuskeet. The prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake as an unintended consequence. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly managed moist-soil impoundments on National Wildlife Refuges in the southeastern USA, especially those hosting dense concentrations of waterfowl. We suggest an earlier seasonal drawdown could potentially mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70 %.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available