4.1 Article

Customized Interface Biofunctionalization of Decellularized Extracellular Matrix: Toward Enhanced Endothelialization

Journal

TISSUE ENGINEERING PART C-METHODS
Volume 22, Issue 5, Pages 496-508

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tec.2015.0556

Keywords

-

Funding

  1. Spanish government [MAT 2012-30706]
  2. EU through European Regional Development Funds
  3. Agency for Administration of University and Research Grants of the Government of Catalonia [2014 SGR 1333]
  4. Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia [2011-BP-B-00042]
  5. People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme [321985]

Ask authors/readers for more resources

Interface biofunctionalization strategies try to enhance and control the interaction between implants and host organism. Decellularized extracellular matrix (dECM) is widely used as a platform for bioengineering of medical implants, having shown its suitability in a variety of preclinical as well as clinical models. In this study, specifically designed, custom-made synthetic peptides were used to functionalize dECM with different cell adhesive sequences (RGD, REDV, and YIGSR). Effects on in vitro endothelial cell adhesion and in vivo endothelialization were evaluated in standardized models using decellularized ovine pulmonary heart valve cusps (dPVCs) and decellularized aortic grafts (dAoGs), respectively. Contact angle measurements and fluorescent labeling of custom-made peptides showed successful functionalization of dPVCs and dAoGs. The functionalization of dPVCs with a combination of bioactive sequences significantly increased in vitro human umbilical vein endothelial cell adhesion compared to nonfunctionalized controls. In a functional rodent aortic transplantation model, fluorescent-labeled peptides on dAoGs were persistent up to 10 days in vivo under exposure to systemic circulation. Although there was a trend toward enhanced in vivo endothelialization of functionalized grafts compared to nonfunctionalized controls, there was no statistical significance and a large biological variability in both groups. Despite failing to show a clear biological effect in the used in vivo model system, our initial findings do suggest that endothelialization onto dECM may be modulated by customized interface biofunctionalization using the presented method. Since bioactive sequences within the dECM-synthetic peptide platform are easily interchangeable and combinable, further control of host cell proliferation, function, and differentiation seems to be feasible, possibly paving the way to a new generation of multifunctional dECM scaffolds for regenerative medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available