4.5 Article

Effective area and charge density of dextran sulphate doped PEDOT modified electrodes

Journal

SYNTHETIC METALS
Volume 220, Issue -, Pages 394-401

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2016.07.010

Keywords

Electroactive polymer; Surface analysis; Charge density

Funding

  1. Australian Research Council Centre of Excellence Scheme [CE0561616, CE140100012]
  2. ARC [FL110100196]

Ask authors/readers for more resources

The performance of neural electrodes over chronic periods is poor with degrading signal-to-noise ratio and low biocompatibility. Consequently, electrodes require modification to improve their performance, biostability and biocompatibility. A large variety of doped conducting, polymers have been proposed for optimising neural electrodes, but to date, none have achieved the required biostability and biocompatibility necessary for human application. Dextran sulfate is used as an antithrombotic and may be of use in improving neural electrode biocompatibility. Poly-3,4-ethylenedioxythiophene was successfully doped with dextran sulfate (PEDOT-DS) by electropolymerisation on neural electrode arrays. Deposited films increased the electrode area and displayed a rough morphology compared to uncoated electrodes. Electrode area and charge density were obtained using microscopy and reduction of Bu (NH3)(6)(3+). Deposition charge, geometrical and linear diffusion electroactive areas were strongly correlated with deposition time. The charge density calculated from the geometric area was greater on PEDOT-DS modified electrodes than unmodified and PEDOT-para-toluene sulfonate (PEDOT-pTs) modified electrodes. The charge density calculated from the linear diffusion electroactive area was smaller on PEDOT-DS modified electrodes than unmodified and PEDOT-pTs modified electrodes. The charge density of the PEDOT-DS modified electrodes was dependant on the electrode area. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available