4.6 Article

Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere

Journal

CLIMATE DYNAMICS
Volume 46, Issue 3-4, Pages 1185-1195

Publisher

SPRINGER
DOI: 10.1007/s00382-015-2639-5

Keywords

Climate impact of Arctic sea ice; Sea ice-atmosphere interaction; North Atlantic Oscillation; Stratosphere downward propagation

Funding

  1. GREENICE project - NordForsk Top-level Research Initiative [61841]

Ask authors/readers for more resources

The relationship of Barents-Kara sea ice concentration in October and November with atmospheric circulation in the subsequent winter is examined using reanalysis and observational data. The analyses are performed on data with the 5-year running means removed to reduce the potential effects of slowly-varying external driving factors, such as global warming. We show that positive (negative) Barents-Kara sea ice concentration anomaly in autumn is associated with a positive (negative) North Atlantic Oscillation-like (NAO) pattern with lags of up to 3 months. The month-to-month variations in the lag relationships of the atmospheric anomalies related to November sea ice concentration are presented. Further analysis shows that the stratosphere-troposphere interaction may provide the memory in the system: positive (negative) sea ice concentration anomaly in November is associated with a strengthened (weakened) stratospheric polar vortex and these anomalies propagate downward leading to the positive (negative) NAO-like pattern in the late December to early January. This stratosphere mechanism may also play a role for Barents-Kara sea ice anomaly in December, but not for September and October. Consistently, Eliassen-Palm, eddy heat and momentum fluxes suggest that there is strong forcing of the zonal winds in November.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available