4.6 Article

Low-Salinity Surfactant Flooding-A Multimechanistic Enhanced-Oil-Recovery Method

Journal

SPE JOURNAL
Volume 21, Issue 3, Pages 744-760

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/173801-PA

Keywords

-

Ask authors/readers for more resources

We have applied UTCHEM-IPhreeqc to investigate low-salinity (LS) waterflooding and LS surfactant (LSS) flooding. Numerical-simulation results were compared with laboratory experiments reported by Alagic and Skauge (2010). UTCHEM-IPhreeqc combines the UTCHEM numerical chemical-flooding simulator with IPhreeqc, the United States Geological Survey geochemical model. The IPhreeqc model was coupled to UTCHEM to model LS waterflooding as a function of geochemical reactions. The surfactant coreflood experiments were performed in vertical cores without using polymer or other mobility-control agents. These experiments were performed at a velocity greater than the critical velocity for a gravity-stable flood. After history matching the experiments, additional numerical simulations of surfactant floods at the critical velocity were run to estimate the performance under stable conditions. We also simulated a surfactant flood at higher salinity with lower interfacial tension (IFT) and compared the results with the LSS flood. These results provide new insights into LS waterflooding and surfactant flooding. Addition of surfactants prevents the retrapping of oil that was initially mobilized using LS-brine injection. The results show that the proper selection of surfactant and the design of the surfactant flood might surpass the potential benefits of LS waterflooding in terms of both higher oil recovery and lower cost. Specially, a more-effective method is expected in a stable design with no preflood.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available