4.6 Article

APDDE: self-adaptive parameter dynamics differential evolution algorithm

Journal

SOFT COMPUTING
Volume 22, Issue 4, Pages 1313-1333

Publisher

SPRINGER
DOI: 10.1007/s00500-016-2418-1

Keywords

Differential evolution; Self-adapting strategy; Real-time optimization

Funding

  1. National Natural Science Foundation of China [61572074]
  2. Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science [Z121101002812005]

Ask authors/readers for more resources

In real-time high-dimensional optimization problem, how to quickly find the optimal solution and give a timely response or decisive adjustment is very important. This paper suggests a self-adaptive differential evolution algorithm (abbreviation for APDDE), which introduces the corresponding detecting values (the values near the current parameter) for individual iteration during the differential evolution. Then, integrating the detecting values into two mutation strategies to produce offspring population and the corresponding parameter values of champion are retained. In addition, the whole populations are divided into a predefined number of groups. The individuals of each group are attracted by the best vector of their own group and implemented a new mutation strategy DE/Current-to-lbest/1 to keep balance of exploitation and exploration capabilities during the differential evolution. The proposed variant, APDDE, is examined on several widely used benchmark functions in the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization (13 global numerical optimization problems) and 7 well-known basic benchmark functions, and the experimental results show that the proposed APDDE algorithm improves the existing performance of other algorithms when dealing with the high-dimensional and multimodal problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available