4.7 Article

Dissipation and adsorption of isoproturon, tebuconazole, chlorpyrifos and their main transformation products under laboratory and field conditions

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 569, Issue -, Pages 86-96

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2016.06.133

Keywords

Isoproturon; Tebuconazole; Chlorpyrifos; Dissipation; Adsorption; Lab-to-field assessment

Funding

  1. European Commission [324349]
  2. French Ministry of Education and Research (MESR) [2013-31]

Ask authors/readers for more resources

Assessment of dissipation constitutes an integral part of pesticides risk assessment since it provides an estimate of the level and the duration of exposure of the terrestrial ecosystem to pesticides. Within the frame of an overall assessment of the soil microbial toxicity of pesticides, we investigated the dissipation of a range of dose rates of three model pesticides, isoproturon IPU), tebuconazole (TCZ), and chlorpyrifos CHL), and the formation and dissipation of their main transformation products following a tiered lab-to-field approach. The adsorption of pesticides and their transformation products was also determined. IPU was the least persistent pesticide showing a dose-dependent increase in its persistence in both laboratory and field studies. CHL dissipation showed a dose-dependent increase under laboratory conditions and an exact opposite trend in the field. TCZ was the most persistent pesticide under lab conditions showing a dose-dependent decrease in its dissipation, whereas in the field TCZ exhibited a biphasic dissipation pattern with extrapolated DT90s ranging from 198 to 603.4 days in the x1 and x2 dose rates, respectively. IPU was demethylated to mono- (MD-IPU) and di-desmethyl-isoproturon (DD-IPU) which dissipated following a similar pattern with the parent compound. CHL was hydrolyzed to 3,5,6-trichloro-2-pyridinol (TCP) which dissipated showing a reverse dose-dependent pattern compared to CHL. Pesticides adsorption affinity increased in the order IPU < TCZ < CHL. IPU transformation products showed low affinity for soil adsorption, whereas TCP was weakly adsorbed compared to its parent compound. The temporal dissipation patterns of the pesticides and their transformation products will be used as exposure inputs for assessment of their soil microbial toxicity. (C) 2016 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available