3.9 Article

Gene network controlling the morphogenesis of D-melanogaster macrochaetes: An expanded model of the central regulatory circuit

Journal

RUSSIAN JOURNAL OF DEVELOPMENTAL BIOLOGY
Volume 47, Issue 5, Pages 288-293

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S1062360416050040

Keywords

drosophila; achaete-scute complex; gene networks; mathematical model; nonlinear dynamic systems; stationary points

Funding

  1. Genetic Bases of Molecular Genetics, Cell Biology, Bioinformatics, and Biotechnology [0324-2015-0003]
  2. Russian Science Foundation [14-24-00123]
  3. Russian Foundation for Basic Research [15-01-00745]
  4. Russian Science Foundation [14-24-00123] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

The drosophila macrochaetes act as mechanoreceptors, the sensory organs of the peripheral nervous system. Each mechanoreceptor consists of four specialized cells, namely, the shaft, socket, neuron, and sheath. All these cells develop from a single cell referred to as the sensory organ precursor (SOP) cell. The SOP cell segregates from the surrounding cells of imaginal disc, thereby launching multistage sensory organ development. A characteristic feature of the SOP cell is the highest content of the proneural proteins Achaete and Scute (ASC) as compared with the surrounding cells. The pattern of changes in the content of proneural proteins in the SOP cell is determined by a gene network with the achaete-scute (AS-C) gene complex as its key component. The activity of this complex is controlled by the central regulatory circuit (CRC), containing the genes hairy, senseless (sens), charlatan (chn), scratch (scrt), daughterless (da), extramacrochaete (emc), and groucho (gro), encoding the transcription factors involved in the system of feedforwards and feedbacks and implementing the activation-repression of CRC components, as well as the gene phyllopod (phyl), an adaptor protein that controls the degradation of ASC proteins. A mathematical model describing the CRC functioning in the SOP cell as a regulator of the content of ASC proneural proteins is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available