4.5 Article

Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator

Journal

RESEARCH ON CHEMICAL INTERMEDIATES
Volume 42, Issue 9, Pages 6959-6973

Publisher

SPRINGER
DOI: 10.1007/s11164-016-2509-8

Keywords

Trichloroethylene (TCE); Solution matrix; Reactive oxygen species (ROSs); Zeolite supported nano iron particles (Z-nZVI); Groundwater remediation

Funding

  1. National Natural Science Foundation of China [41373094, 51208199]
  2. China Postdoctoral Science Foundation [2015M570341]
  3. Fundamental Research Funds for the Central Universities [222201514339, 22A201514057]

Ask authors/readers for more resources

The role of reactive oxygen species (ROSs) and effect of solution matrix have been investigated for the degradation of trichloroethylene (TCE). Zeolite-supported nano iron (Z-nZVI) was synthesized as an activator to catalyze sodium percarbonate (SPC) with or without hydroxylamine, i.e. as reducing agent (RA). The probe tests confirmed the generation of OH center dot and O-2(-center dot) in the Z-nZVI activated SPC system in absence of the RA, while the presence of RA significantly increased the generation of OH center dot and O-2(-center dot) radicals. Scavenger tests demonstrated that OH center dot was the main ROS responsible for TCE degradation, whereas O-2(-center dot) also participated in TCE degradation. From the solution matrix perspective, the experimental results confirmed significant scavenging effects of Cl- (1.0, 10.0, and 100 mmol L-1) and HCO3- (1.0 and 10.0 mmol L-1), whereas the scavenging effects were fairly impeded at 100 mmol L-1 concentration of HCO3-. On the other hand, a considerable decline in scavenging effect was observed in the presence of RA in tested Cl and HCO3- concentration ranges. In addition, negligible scavenging effects of NO3- and SO42- anions were found in all tested concentrations. The effect of initial solution pH on catalytic activity indicated a significant increase in the TCE degradation in the presence of RA even at higher pH value of 9. The results indicated that the Z-nZVI activated SPC system in presence of RA can effectively degrade chlorinated organic solvents, but it is important to consider the intensive existence of anions in groundwater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available