4.3 Article

The Walker A motif mutation recA4159 abolishes the SOS response and recombination in a recA730 mutant of Escherichia coli

Journal

RESEARCH IN MICROBIOLOGY
Volume 167, Issue 6, Pages 462-471

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.resmic.2016.04.005

Keywords

RecA730 protein; ATP binding; Filament formation

Categories

Funding

  1. Croatian Ministry of Science [098-0982913-2867]

Ask authors/readers for more resources

In bacteria, the RecA protein forms recombinogenic filaments required for the SOS response and DNA recombination. In order to form a recombinogenic filament, wild type RecA needs to bind ATP and to interact with mediator proteins. The RecA730 protein is a mutant version of RecA with superior catalytic abilities, allowing filament formation without the help of mediator proteins. The mechanism of RecA730 filament formation is not well understood, and the question remains as to whether the RecA730 protein requires ATP binding in order to become competent for filament formation. We examined two mutants, recA730,4159 (presumed to be defective for ATP binding) and recA730,2201 (defective for ATP hydrolysis), and show that they have different properties with respect to SOS induction, conjugational recombination and double-strand break repair. We show that ATP binding is essential for all RecA730 functions, while ATP hydrolysis is required only for double-strand break repair. Our results emphasize the similarity of the SOS response and conjugational recombination, neither of which requires ATP hydrolysis by RecA730. (C) 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available