4.7 Article

Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage

Journal

RENEWABLE ENERGY
Volume 85, Issue -, Pages 387-394

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2015.06.056

Keywords

Acid treated MWCNTs; MWCNT/h-EN nanocomposites; Micro-Raman spectroscopy; Hydrogen storage

Funding

  1. University Grants Commission of India under UGC-MRP [41-893/2012(SR)]

Ask authors/readers for more resources

Hydrogen is considered as the most promising clean energy carrier because of its abundance, environmental friendliness and high conversion efficiency. However, developing safe, compact, light weight and cost-effective hydrogen storage materials is one of the most technically challenging barriers to the widespread use of hydrogen as fuel. The present work reports the hydrogen storage performance of multi-walled carbon nanotubes (MWCNT)/hexagonal boron nitride (h-BN) nanocomposites (MWCNT/h-BN), where ultrasonication method is adopted for the synthesis of the MWCNT/h-BN nanocomposites. Hydrogenation process was carried out using Seiverts-like hydrogenation setup. Characterization techniques such as X-ray Diffraction (XRD), Micro-Raman Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Nitrogen adsorption desorption isothermal studies (BET), CHN-elemental analysis and Thermogravimetric Analysis (TGA) were used to analyze the samples at various stages of the experiment. A maximum of 2.3 wt% hydrogen storage is achieved in the case of acid treated IVIWCNTs (A-MWCNT) with 5 wt% of h-BN nanoparticles compared to pure MWCNTs that could store 0.15 wt% only. Moreover the calculated binding energy (0.42 eV) of stored hydrogen of A-MWCNT with 5 wt% of h-BN nanocomposite lies in the recommended range of binding energy (0.2-0.6 eV) for fuel cell applications. The TG study shows that 100% desorption is achieved at the temperature range of 120-410 degrees C and confirms that the prepared hydrogen storage medium will serve effectively in the realm of hydrogen fuel economy in near future. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available