4.7 Article

A seasonal cold storage system based on separate type heat pipe for sustainable building cooling

Journal

RENEWABLE ENERGY
Volume 85, Issue -, Pages 880-889

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2015.07.023

Keywords

Seasonal cold storage; Ice storage; Heat pipe; Renewable energy; Sustainable cooling

Funding

  1. Research Grant Council (RGC) of the Hong Kong SAR [5267/13E]
  2. National Natural Science Foundation of China [51176084]

Ask authors/readers for more resources

Seasonal cold storage is a high-efficient and environmental-friendly technique that uses the stored natural cold energy in winter (e.g., snow, ice or cold ambient air) for free-cooling in summer. This paper presents a seasonal cold storage system that uses separate type heat pipes to charge the cold energy from ambient air in winter automatically, without consuming any energy. The charged cold energy is stored in the form of ice in an insulated tank and is extracted as chilled water for cooling supply in summer, which help to reduce the chiller running time and reduce the associated electricity consumption and greenhouse gas emission significantly. A quasi-steady two-dimensional mathematical model of the system is developed for characterizing the dynamic performance of ice growth (i.e., cold charging). The model is validated using the field measurement data from an ice charging experiment conducted in Beijing. The impacts of various affecting factors, including the weather data and the key parameters of heat pipes, on the charging performance of the cold storage system are analyzed. The effectiveness and sustainability of the proposed system for cooling are demonstrated through a case study of a kindergarten building in Beijing. (c) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available