4.7 Article

Non-uniform agglomerate cathode catalyst layer model on the performance of PEMFC with consideration of water effect

Journal

RENEWABLE ENERGY
Volume 95, Issue -, Pages 191-201

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2016.04.015

Keywords

PEMFC; MEA; Non-uniform catalyst layer; Agglomerate model; Liquid saturation; Water content

Funding

  1. Office of Research and Development in Yuan Ze University [99-HRD-09]
  2. Ministry of Science and Technology [MOST103-2221-E-155-068]

Ask authors/readers for more resources

We focus on the effect of cathode catalyst layer physical structure on the cell performance of proton exchange membrane fuel cell (PEMFC). At low polarization, high inlet humidification predicts better cell performance because of the more active surface in the CL. As polarization is extended near the mass transfer limited regime, high humidification only renders a flooded electrode and inferior cell performance. Catalyst layer with better capillary water transport parameters performs better than that with inferior water repulsion capability. Permeation in the gas diffusion layer (GDL) is important for efficient oxygen diffusion in mass transfer influenced regime. On the other hand, the permeability in catalyst layer only has secondary effect. The distribution of material properties in the CL is studied for the MEA fabrication strategy. The CL is divided into three sub-layers with changing material properties. With water effect considered, better performance is obtained for higher porosity near the GDL, higher electrolyte fraction in the agglomerate near the membrane. The effect of agglomerate particle size differs in the ohmic and mass transfer controlled regimes. Larger agglomerate size near GDL is preferred in the ohmic limited regime, while smaller size near GDL performs better if operated at mass transfer controlled regime. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available