4.8 Article

Extracting multistage screening rules from online dating activity data

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1522494113

Keywords

choice modeling; noncompensatory behavior; mate selection; computational social science

Funding

  1. NIH [K01-HD079554, R24-HD041028]

Ask authors/readers for more resources

This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners (deal breakers) that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for big ticket items.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available