4.8 Article

A protein constructed de novo enables cell growth by altering gene regulation

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1600566113

Keywords

de novo protein design; serB; hisB; auxotroph; synthetic biology

Funding

  1. National Science Foundation (NSF) [MCB-1050510]
  2. NSF

Ask authors/readers for more resources

Recent advances in protein design rely on rational and computational approaches to create novel sequences that fold and function. In contrast, natural systems selected functional proteins without any design a priori. In an attempt to mimic nature, we used large libraries of novel sequences and selected for functional proteins that rescue Escherichia coli cells in which a conditionally essential gene has been deleted. In this way, the de novo protein SynSerB3 was selected as a rescuer of cells in which serB, which encodes phosphoserine phosphatase, an enzyme essential for serine biosynthesis, was deleted. However, SynSerB3 does not rescue the deleted activity by catalyzing hydrolysis of phosphoserine. Instead, SynSerB3 upregulates hisB, a gene encoding histidinol phosphate phosphatase. This endogenous E. coli phosphatase has promiscuous activity that, when overexpressed, compensates for the deletion of phosphoserine phosphatase. Thus, the de novo protein SynSerB3 rescues the deletion of serB by altering the natural regulation of the His operon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available