4.6 Review

Toughening of Epoxy Nanocomposites: Nano and Hybrid Effects

Journal

POLYMER REVIEWS
Volume 56, Issue 1, Pages 70-112

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15583724.2015.1086368

Keywords

fracture; toughening mechanisms; binary; ternary nanocomposite; epoxy; interface

Funding

  1. Australian Research Council [DP0877080, DP120104648]
  2. Australian Research Council [DP0877080] Funding Source: Australian Research Council

Ask authors/readers for more resources

In this paper, we review recent progress made in the field of epoxy-based binary and ternary nanocomposites containing three-, two-, and one-dimensional (i.e., 3D-, 2D-, and 1D) nano-size fillers with a special focus on their fracture behaviors. Despite investigations conducted so far to evaluate the crack-resistance of epoxy nanocomposites and attempts made to clarify the controlling toughening mechanisms of these materials, some questions remain unsolved. It is shown that silica nanoparticles can be as effective as rubber particles in improving the fracture toughness/energy; but incorporation of carbon nanotubes (CNTs) or clay platelets in epoxy matrices delays crack growth only modestly. The nano effects of silica (<25 vol.%) and rubber (>10 wt.%) nanoparticles in toughening epoxy resin are confirmed by comparison with silica and rubber micro-particles of the same loading. There is clear evidence of both synergistic and additive toughening effects in the silica/rubber/epoxy ternary nanocomposites. In addition, positive hybrid toughening effect has been observed in the nano-rubber/CNT/epoxy composites; however, a negative hybrid effect is predominant in nano-clay/nano-rubber/epoxy ternary nano-composites. Future research directions for epoxy-based nanocomposites towards multi-functional applications are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available