4.7 Article

Viscoelastic droplet dynamics in a Y-shaped capillary channel

Journal

PHYSICS OF FLUIDS
Volume 28, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4943110

Keywords

-

Funding

  1. National Natural Science Foundation of China [51176065]
  2. China Scholarship Council

Ask authors/readers for more resources

Non-Newtonian droplet dynamics commonly exist in microfluidic systems. We report simulations of viscoelastic (VE) droplets traveling in a two dimensional capillary bifurcation channel. A numerical system combining phase field method, VE rheology, and Stokes flow equations is built. As a generic microfluidic two-phase problem, we study how a non-Newtonian droplet that approaches a channel bifurcation will behave. We identify conditions for when a droplet will either split into two or be directed into one of the branches. In particular, we study the importance of the non-Newtonian properties. Our results reveal two different non-Newtonian mechanisms that can enhance splitting and non-splitting of droplets with respect to Newtonian droplets, depending on the size of droplet and capillary number. (C) 2016 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available