4.7 Article

The width of the Roper resonance in baryon chiral perturbation theory

Journal

PHYSICS LETTERS B
Volume 760, Issue -, Pages 736-741

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2016.07.068

Keywords

-

Funding

  1. Georgian Shota Rustaveli National Science Foundation [FR/417/6-100/14]
  2. DFG [TR 16, CRC 110]
  3. Chinese Academy of Sciences (CAS) President's International Fellowship Initiative (PIFI) [2015VMA076]

Ask authors/readers for more resources

We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Nuclear

Remarks on non-perturbative three-body dynamics and its application to the K K (K)over-bar system

Xu Zhang, Christoph Hanhart, Ulf-G Meissner, Ju-Jun Xie

Summary: A formalism is discussed for straightforward treatment of the relativistic three-body problem while maintaining the correct analytic structure. It is argued that sacrificing covariance for analyticity can be justified by considering different contributions in a hierarchy, in the spirit of effective field theory. The formalism is applied to the KK(K) over bar system, resulting in the emergence of a(0)(980) and f(0)(980) as hadronic molecules. All inelastic channels are turned off for simplicity.

EUROPEAN PHYSICAL JOURNAL A (2022)

Review Physics, Multidisciplinary

Towards a theory of hadron resonances

Maxim Mai, Ulf -G. Meissner, Carsten Urbach

Summary: In this review, the current understanding of the excited strongly interacting particle spectrum is presented. The systematic and model-independent calculation methods, namely lattice QCD and effective field theories, are discussed. The synergies between these approaches can provide a deeper understanding of the hadron spectrum. The use of the Breit-Wigner parametrization is shown to be inconsistent with chiral symmetry and should be avoided in strongly coupled channels.

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS (2023)

Article Physics, Multidisciplinary

Isospin-conserving hadronic decay of the Ds1(2460) into Dsπ+π-

Meng-Na Tang, Yong-Hui Lin, Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meissner

Summary: The internal structure of charm-strange mesons D-s0*(2317) and D-s1(2460) is being extensively studied. Their narrow widths are due to their dominant decay through isospin-breaking hadronic channels. The decay of D-s1(2460) can also occur through hadronic final states with isospin conservation, but is strongly suppressed due to phase space limitations. By considering the Ds1(2460) as a D*K hadronic molecule, we find that the predicted partial widths and the pi(+)pi(-) invariant mass distribution are consistent with experimental measurements, and suggest possible ways to distinguish between the hadronic molecular and compact state pictures for the D-s1(2460)(+). Predictions for B-s1(0) -> B-s(0) pi(+) pi(-) are also made.

COMMUNICATIONS IN THEORETICAL PHYSICS (2023)

Article Multidisciplinary Sciences

Emergent geometry and duality in the carbon nucleus

Shihang Shen, Serdar Elhatisari, Timo A. Laehde, Dean Lee, Bing-Nan Lu, Ulf-G. Meissner

Summary: The carbon atom is the backbone of organic chemistry and has a complex nucleus in its predominant isotope, C-12. In this study, a model-independent density map of the nuclear states of C-12 is provided using nuclear lattice effective field theory. The well-known Hoyle state is found to have a bent-arm or obtuse triangular arrangement of alpha clusters. All low-lying nuclear states of C-12 are identified as having an intrinsic shape composed of three alpha clusters forming either an equilateral triangle or an obtuse triangle.

NATURE COMMUNICATIONS (2023)

Article Physics, Particles & Fields

Particle-dimer approach for the Roper resonance in a finite volume

Daniel Severt, Maxim Mai, Ulf-G. Meissner

Summary: We propose a new finite-volume approach based on an Effective Field Theory Lagrangian to implement two- and three-body dynamics in a transparent way. The formalism utilizes a particle-dimer picture and formulates the quantization conditions based on the self-energy of the decaying particle. The study focuses on the Roper resonance, utilizing input from lattice QCD and phenomenology, and predicts finite-volume energy eigenvalues, which are then compared to existing lattice QCD calculations as initial guidance for precision requirements.

JOURNAL OF HIGH ENERGY PHYSICS (2023)

Article Physics, Particles & Fields

Local spatial densities for composite spin-3/2 systems

H. Alharazin, B. -d. Sun, E. Epelbaum, J. Gegelia, U. -g. Meissner

Summary: This article applies the definition of local spatial densities using sharply localized one-particle states to spin-3/2 systems. Matrix elements of the electromagnetic current and the energy-momentum tensor are considered, and integral expressions of associated spatial distributions in terms of form factors are derived.

JOURNAL OF HIGH ENERGY PHYSICS (2023)

Article Multidisciplinary Sciences

Revealing the nature of hidden charm pentaquarks with machine learning

Zhenyu Zhang, Jiahao Liu, Jifeng Hu, Qian Wang, Ulf-G. Meissner

Summary: In this study, the nature of hidden charm pentaquarks was investigated using a neural network approach. The results showed that this method could differentiate states with different quantum numbers, providing more insights into the nature of exotic states. Additionally, a comparison between the neural network and fitting methods highlighted similarities and differences in revealing underlying physics.

SCIENCE BULLETIN (2023)

Article Physics, Particles & Fields

Electromagnetic and gravitational local spatial densities for spin-1 systems

J. Yu. Panteleeva, E. Epelbaum, J. Gegelia, U. -G. Meissner

Summary: This paper considers the matrix elements of the electromagnetic current and energy-momentum tensor for spin-1 systems with sharply localized states. It discusses their interpretation as local spatial densities of various characteristics of the system in question.

JOURNAL OF HIGH ENERGY PHYSICS (2023)

Article Physics, Particles & Fields

Definition of gravitational local spatial densities for spin-0 and spin-1/2 systems

J. Yu. Panteleeva, E. Epelbaum, J. Gegelia, U. -G. Meissner

Summary: We determine the definition details of the spatial densities corresponding to the gravitational form factors of spin-0 and spin-1/2 systems using spherically symmetric sharply localized wave packets. The expressions for these spatial densities are provided in reference frames with both zero and non-zero expectation values of the momentum operator.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Astronomy & Astrophysics

Determination of diffractive PDFs from a global QCD analysis of inclusive diffractive DIS and dijet cross-section measurements at HERA

Maral Salajegheh, Hamzeh Khanpour, Ulf-G. Meissner, Hadi Hashamipour, Maryam Soleymaninia

Summary: This study presents an updated set of SKMHS diffractive parton distribution functions (PDFs), including the recent diffractive dijet cross-section measurement. The new sets, SKMHS23 and SKMHS23-dijet, are presented at NLO and NNLO accuracy in perturbative QCD. The effect of diffractive dijet data and higher-order QCD corrections on the extracted PDFs and data/theory agreements are clearly examined and discussed.

PHYSICAL REVIEW D (2023)

Article Physics, Nuclear

Hyperon-nucleon interaction in chiral effective field theory at next-to-next-to-leading order

Johann Haidenbauer, Ulf-G. Meissner, Andreas Nogga, Hoai Le

Summary: A hyperon-nucleon potential for the S = -1 sector up to third order in the chiral expansion is introduced, considering both the SU(3) flavor symmetry and explicit SU(3) symmetry breaking. An innovative regularization scheme is used, leading to an excellent description of scattering data and the analysis of new data from J-PARC. Results for hypertriton and A = 4 hyper-nuclear separation energies are presented, along with an uncertainty estimate for selected observables in the hyperon-nucleon system.

EUROPEAN PHYSICAL JOURNAL A (2023)

Article Physics, Nuclear

The electromagnetic Sigma-to-Lambda transition form factors with coupled-channel effects in the space-like region

Yong-Hui Lin, Hans-Werner Hammer, Ulf-G. Meissner

Summary: Using dispersion theory, the Sigma-to-Lambda transition form factors in electromagnetic interactions are calculated considering the pion electromagnetic form factor, SU(3) chiral perturbation theory, the baryon decuplet, and the pi pi- K coupled-channel effect. The electric form factor is significantly affected by the inclusion of the K channel, while the magnetic form factor is minimally affected. The uncertainties in the three-flavor chiral perturbation theory are estimated using a bootstrap sampling method.

EUROPEAN PHYSICAL JOURNAL A (2023)

Article Physics, Particles & Fields

PccN states in a unitarized coupled-channel approach

Chao-Wei Shen, Yong-hui Lin, Ulf-G. Meissner

Summary: Using an effective Lagrangian with heavy quark spin symmetry, this study investigates the coupled-channel dynamics of the doubly charmed systems D-(*) Sigma((*))(c). The potential considered includes exchanges of pseudoscalar and vector mesons in the t-channel. By applying the first iterated solution of the N/ D method, several S-wave bound states with isospin I = 1/2 are discovered. These states correspond to open-charm partners of the hidden charm pentaquarks P-psi(N) observed by the LHCb Collaboration.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Physics, Particles & Fields

Definition of gravitational local spatial densities for spin-0 and spin-1/2 systems

J. Yu. Panteleeva, E. Epelbaum, J. Gegelia, U-G Meissner

Summary: Using spherically symmetric sharply localized wave packets, we determine the details of defining the spatial densities corresponding to the gravitational form factors of spin-0 and spin-1/2 systems. The expressions for the spatial densities are provided in the frames with both zero and non-zero expectation values of the momentum operator.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Physics, Nuclear

Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO

P. Maris, R. Roth, E. Epelbaum, R. J. Furnstahl, J. Golak, K. Hebeler, T. Huether, H. Kamada, H. Krebs, H. Le, Ulf -G. Meissner, J. A. Melendez, A. Nogga, P. Reinert, R. Skibinski, J. P. Vary, H. Witala, T. Wolfgruber

Summary: This paper presents a comprehensive investigation on few-nucleon systems as well as light and medium-mass nuclei, using the current Low Energy Nuclear Physics International Collaboration two-nucleon interactions and three-nucleon forces. By considering higher-order corrections and performing correlated truncation error analysis, the resulting Hamiltonian is shown to successfully predict various observables and spectra of nucleon-deuteron scattering and light p-shell nuclei. However, the charge radii are found to be underpredicted by approximately 10% for the oxygen isotopes and almost 20% for 40Ca and 48Ca.

PHYSICAL REVIEW C (2022)

Article Astronomy & Astrophysics

Inhomogeneity of a rotating quark-gluon plasma from holography

Nelson R. F. Braga, Octavio C. Junqueira

Summary: This study investigates the influence of rotation on the transition temperature of strongly interacting matter produced in non-central heavy ion collisions. By using a holographic description of an AdS black hole, the authors extend the analysis to the more realistic case where the matter spreads over a region around the rotational axis. The results show the coexistence of confined and deconfined phases and are consistent with the concept of local temperature in rotating frames developed by Tolman and Ehrenfest.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Constrain the time variation of the gravitational constant via the propagation of gravitational waves

Bing Sun, Jiachen An, Zhoujian Cao

Summary: This paper investigates the effect of gravitational constant variation on the propagation of gravitational waves. By employing two analytical methods, the study finds that variations in the gravitational constant result in amplitude and phase corrections for gravitational waves, and the time variation of the gravitational constant can be constrained through the propagation of gravitational waves.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Quantum tunneling from Schwarzschild black hole in non-commutative gauge theory of gravity

Abdellah Touati, Zaim Slimane

Summary: This letter presents the first study of Hawking radiation as a tunneling process within the framework of non-commutative gauge theory of gravity. The non-commutative Schwarzschild black hole is reconstructed using the Seiberg-Witten map and the star product. The emission spectrum of outgoing massless particles is computed using the quantum tunneling mechanism. The results reveal pure thermal radiation in the low-frequency scenario, but a deviation from pure thermal radiation in the high-frequency scenario due to energy conservation. It is also found that noncommutativity enhances the correlations between successively emitted particles.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Compact stars: To cross or go around? That is the question

Shahar Hod

Summary: The travel times of light signals between two antipodal points on a compact star's surface are calculated for two different trajectories. It is shown that, for highly dense stars, the longer trajectory along the surface may have a shorter travel time as measured by asymptotic observers. A critical value of the dimensionless density-area parameter is determined for constant density stars to distinguish cases where crossing through the star's center or following a semi-circular trajectory on the surface has a shorter travel time as measured by asymptotic observers.

PHYSICS LETTERS B (2024)