4.6 Article

Functionalized SPIONs: the surfactant nature modulates the self-assembly and cluster formation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 27, Pages 18441-18449

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp01694d

Keywords

-

Funding

  1. MIUR (PRIN) [2010-BJ23MN_007]

Ask authors/readers for more resources

SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) represent a suitable system for several applications especially in nanomedicine. Great efforts have been made to design stable and biocompatible functionalized SPIONs suitable for diagnostics and drug delivery. In particular, zwitterionic-surfactant functionalized SPIONs, obtained through a coating strategy based on hydrophobic interaction, are promising systems for biomedical applications. The size of functionalized SPIONs has emerged as a crucial parameter determining their fate in living organisms. However, not all the proposed functionalization strategies lead to monodispersed systems and SPION clustering often occurs. In this study, we report a systematic investigation on different surfactant-functionalized SPIONs in order to explore the possibility of tuning the particle size by choosing an appropriate amphiphilic molecule. By combining Small-Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) analysis, we have provided a detailed description of the functionalized SPION structure. Furthermore, we have also related the surfactant aggregation properties, i.e. the Critical Micelle Concentration (CMC), to their efficiency in coating the SPION surface. A lack in the formation of a compact shell leads to a clusters formation. On this basis, the present study contributes to furnishing decisive information to define synthetic strategies able to tune functionalized-SPION design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available